Pull to refresh
97.49

Physics

A science about the world around us

Show first
Rating limit
Level of difficulty

Future economics for physicists

Reading time7 min
Views1.8K

Annotation. This article gives an analogy between the forces of nature and various types of money. A justification for the "money conservation laws" is made. Explanation of the IT-money phenomenon by analogy to physics laws is given, as well as gold and currency money. The transition from the gold and currency to the gold-currency-computing economy is considered. A reasonable assumption is made that the fourth type of money after gold, securities and IT money will be so-called "citation indices" or "ratings", which are similar in their properties to stock indices.


What is money?


This article is an attempt to understand what money is from the physics and econophysics points of view. Econophysics (economics and physics) is an interdisciplinary research field, applying theories and methods originally developed by physicists to solve problems in economics, usually those including uncertainty or stochastic processes, nonlinear dynamics and evolutionary games.

Read more →

Holographic Principle, new type gyroscope, information without light speed limit, teleportation of physical objects…

Reading time59 min
Views13K
Warning

First, all the objects and theories described in this article have the status of hypothetical at the moment. That is, the holographic hypothesis and string theories have not been experimentally confirmed many.

Second, a fundamentally new type of mechanical gyroscope with six degrees of freedom is proposed for experimental verification (base) of hypotheses. Of the two and three degrees of freedom mechanical gyroscopes known to science, this is the last of the possible types with the maximum number of degrees of freedom in the holonomic system (GYRO_6DoF).

Third, with the advent of the experimental base — the tops of the physical pyramid, string theories, and the holographic hypothesis, which is actually the foundation of the future Theory of Everything, are temporarily removed from criticism until the moment of practical implementation of the experiment and measurements.


Abstract

Even people far from physics know that the maximum possible data transmission rate of any signal is equal to the speed of light in a vacuum. It is denoted by the letter «c», and this is about 300 thousand kilometers per second. The speed of light in a vacuum is one of the fundamental physical constants. The impossibility of achieving speeds exceeding the speed of light in three-dimensional space is a deduction from Einstein's Special Theory of Relativity (SRT). Usually, when it is argued that SRT prohibits the transmission of the information above the speed of light, an implicit assumption is made that there is no other way other than to «bind information» to a photon and transmit it. However, there is another way. The well-known physical hypothesis — the Holographic Principle (a modern and widely used tool in theoretical physics) points to an interesting phenomenon: “Phenomena taking place in three-dimensional space can be projected onto a remote screen without losing information” — Leonard Susskind “The World as a Hologram ”[p. 3].

image

Read more →

The color of the Moon and the Sun from space in terms of RGB and color temperature

Reading time17 min
Views3.6K
It would seem that the question of the color of the Moon and the Sun from space for modern science is so simple that in our century there should be no problem at all with the answer. We are talking about colors when observing precisely from space, since the atmosphere causes a color change due to Rayleigh light scattering. «Surely somewhere in the encyclopedia about this in detail, in numbers it has long been written,» you will say. Well, now try searching the Internet for information about it. Happened? Most likely no. The maximum that you will find is a couple of words about the fact that the Moon has a brownish tint, and the Sun is reddish. But you will not find information about whether these tints are visible to the human eye or not, especially the meanings of colors in RGB or at least color temperatures. But you will find a bunch of photos and videos where the Moon from space is absolutely gray, mostly in photos of the American Apollo program, and where the Sun from space is depicted white and even blue.

Especially my personal opinion is nothing but a consequence of the intervention of politics in science. After all, the colors of the Moon and the Sun from space directly relate to the flights of Americans to the Moon.

I searched through many scientific articles and books in search of information about the color of the Moon and the Sun from space. Fortunately, it turned out that even though they do not have a direct answer to RGB, there is complete information about the spectral density of the solar radiation and the reflectivity of the Moon across the spectrum. This is quite enough to get accurate colors in RGB values. You just need to carefully calculate what, in fact, I did. In this article I will share the results of calculations with you and, of course, I will tell you in detail about the calculations themselves. And you will see the Moon and the Sun from space in real colors!
Read more →

Most common misconceptions in popular physics

Reading time5 min
Views3.3K
Somewhere in an alternative Universe, based on MWI, I became a genius in physics. But in our Universe, I just read professional publications in physics, trying to keep myself up to date, meanwhile working as pizza delivery guy as DBA. Because of a slightly deeper knowledge of the subject it is almost impossible for me to watch the Discovery channel and other popular TV shows and the YouTube videos. I see nothing but oversimplifications, lies, and half-truths and can’t enjoy the shows.

I decided to compile a list of the most popular misconceptions. And the winner is...., or course, this one:

The Big Bang


Usually it is pictured like this:

image
Read more →
2