Pull to refresh

Comments 11

Когда увидел самую первую картинку — аж мурашки по коже. Мелькнули мысли, что в статье будет решение этой задачи
Ну, в каком-то смысле решение. Как говорится, решить уравнение — значит найти всеего корни либо доказать, что их не существует. Тут, судя по всему, второй случай.
Я так понял нужно разрезать именно на равные по форме фигуры, а не просто по площади?
Совершенно верно. На равные по площади части можно разрезать любую фигуру.
А как доказать, что любую?
Если быть точным, любую ограниченную и измеримую фигуру. Доказательство очевидно. Выберем произвольное направление, возьмём одну из границ и начнём двигать её в сторону другой границы. Если фигура ограничена, то доля её площади, оставшаяся позади границы — непрерывная функция от положения границы, изменяющаяся от 0 до 1. Значит, в каком-то положении она будет равняться 1/2, ч.т.д.
Берем интегралы, а дальше все просто
Я хотел бы уточнить, почему
Это движение может быть либо параллельным переносом, либо поворотом, либо скользящей симметрией

Думаю, само собой очевидно, что это движение может быть суперпозицией переносов, поворотов и симметрий. Как вы будете доказывать этот случай?
А можно я не стану ничего доказывать и просто сошлюсь на курс аналитической геометрии? Всякое движение будет либо переносом, либо поворотом, либо скользящей симметрией. В том числе любая суперпозиция переносов, поворотов и скользящих симметрий.
Only those users with full accounts are able to leave comments. Log in, please.