Революция в области искусственного интеллекта переформатирует все отрасли нашей жизни, с одной стороны обещая невероятные инновации, а с другой ー сталкивая нас с новыми вызовами. В безумном потоке изменений эффективная обработка данных становится приоритетом для приложений, на основе больших языковых моделей, генеративного ИИ и семантического поиска. В основе этих технологий лежат векторные представления (embeddings, дальше будем называть их Эмбеддинги), сложные представления данных, пронизанные критической семантической информацией.
Эти вектора, созданные LLMs, охватывают множество атрибутов или характеристик, что делает управление ими сложной задачей. В области искусственного интеллекта и машинного обучения эти характеристики представляют различные измерения данных, необходимые для обнаружения закономерностей, взаимосвязей и базовых структур. Для удовлетворения уникальных требований к обработке этих вложений необходима специализированная база данных. Векторные базы данных специально созданы для обеспечения оптимизированного хранения и запросов векторов, сокращая разрыв между традиционными базами данных и самостоятельными векторными индексами, а также предоставляя ИИ-системам инструменты, необходимые для успешной работы в этой среде нагруженной данными.