В этой статье я постараюсь описать то, как работает человеческий мозг и как это использовать в проектировании интерфейсов.

Паттерн — это повторяющийся шаблон, который может возникать в различных сферах жизнедеятельности.
Пользователь
Паттерн — это повторяющийся шаблон, который может возникать в различных сферах жизнедеятельности.
Response View::Handle(Request&& request, const Dependencies& dependencies) {
auto cluster = dependencies.pg->GetCluster();
auto trx = cluster->Begin(storages::postgres::ClusterHostType::kMaster);
const char* statement = "SELECT ok, baz FROM some WHERE id = $1 LIMIT 1";
auto row = psql::Execute(trx, statement, request.id)[0];
if (!row["ok"].As<bool>()) {
LOG_DEBUG() << request.id << " is not OK of " << GetSomeInfoFromDb();
return Response400();
}
psql::Execute(trx, queries::kUpdateRules, request.foo, request.bar);
trx.Commit();
return Response200{row["baz"].As<std::string>()};
}
Мой опыт подсказывает, что любой более или менее сложный проект по машинному обучению рано или поздно превращается в набор сложных неподдерживаемых внутренних инструментов. Эти инструменты, как правило, мешанина из скриптов Jupyter Notebooks и Flask, которые сложно развёртывать и интегрировать с решениями типа GPU сессий Tensorflow.
Впервые я столкнулся с этим в университете Карнеги, затем в Беркли, в Google X, и, наконец, при создании автономных роботов в Zoox. Зарождались инструменты в виде небольших Jupyter notebooks: утилита калибровки сенсора, сервис моделирования, приложение LIDAR, утилита для сценариев и т.д.
С ростом важности инструментов появлялись менеджеры. Бюрократия росла. Требования повышались. Маленькие проекты превращались в огромные неуклюжие кошмары.
Tesseract — это движок оптического распознавания символов (OCR) с открытым исходным кодом, является самой популярной и качественной OCR-библиотекой.
OCR использует нейронные сети для поиска и распознавания текста на изображениях.
Tesseract ищет шаблоны в пикселях, буквах, словах и предложениях, использует двухэтапный подход, называемый адаптивным распознаванием. Требуется один проход по данным для распознавания символов, затем второй проход, чтобы заполнить любые буквы, в которых он не был уверен, буквами, которые, скорее всего, соответствуют данному слову или контексту предложения.