Search
Write a publication
Pull to refresh
4
0

Пользователь

Send message

Тренировочные наборы из видео — быстро и качественно

Reading time2 min
Views2.1K
Любой, не самый тривиальный (или просто редкий), объект с легкостью создаст массу проблем практически при каждой попытке применения нейронных сетей для решения реальных задач. Очевидно, отсутствие вменяемого тренировочного набора существенно усложняет подавляющее количество сценариев использования нейростевого подхода.

Как быть, например, с редким видом кузнечиков, распознавание представителей которого, по той или иной причине, стало очень важной задачей.


Все результаты/примеры получены самостоятельно (и быстро).

Создание лица персонажа для игры «OnAir»

Reading time6 min
Views11K
Добрый день! Меня зовут Дарья, я 3d artist в студии RainStyle production. В настоящее время мы заняты разработкой игры в жанре Sci-fi horror под названием “On Air”.

image

Игра рассказывает о загадочных событиях, случившихся с главным героем, который волей случая остановился в американском отеле Алгол. Это происшествие полностью поменяет его жизнь и заставит столкнуться с неизвестным.
Читать дальше →

Квазиньютоновские методы, или когда вторых производных для Атоса слишком много

Reading time10 min
Views8.7K
При первом знакомстве с квазиньютоновскими методами можно удивиться дважды. Во-первых, после беглого взгляда на формулы охватывают сомнения, что это вообще может работать. Однако же они работают. Дальше кажется сомнительным, что они будут работать хорошо. И тем удивительнее видеть то, насколько они превосходят по скорости разнообразные вариации градиентного спуска, причем не на специально построенных задачах, а на самых настоящих, взятых из практики. И если после этого еще остаются сомнения вперемешку с интересом — то нужно разбираться в том, почему вообще работает это нечто.
Читать дальше →

Спорт для программиста второй свежести

Reading time14 min
Views25K
Около 30 лет назад я написал свою первую программу. Примерно тогда же впервые взял в руки штангу. Около 30 дней назад были приобретены PlayStation и PS VR.



По случаю этих славных юбилеев размышления на темы: Как продуктивно провести много лет на сидячей работе? Без выгорания, регистрации и смс. Поможет ли в этом Матрица? Идет ли виртуальный конь на смену спортивной лошадке?

Читать дальше →

Очень много YouTube-каналов для прокачки английского языка для программистов

Reading time4 min
Views61K
Привет, Хабр!

С помощью YouTube можно ощутимо и сравнительно быстро улучшить английский.
Понимание на слух как минимум. Истина не нова, но мало кто смотрит английский YouTube, потому что легко потеряться в бесконечности каналов. Но для вас я собрал самые стоящие каналы!

Добавляйте в закладки и подписывайтесь на меня!
Дальше вас ждет много крутых статей.

Поучить английский


AJ Hoge. На его канале есть всё: от базовых слов до размышлений о важности языка тела в общении. Чувак пилит видосы уже много лет, материальчик накопился.

EngVid. Если бы можно было выбрать что-то одно для улучшения английского, то это оно. Разные преподы и тематики, постоянное обновление, бездонный ресурс. Ещё сайт одноимённый крутой, с удобной навигацией — можно найти очень узкую тему по интересам.
Читать дальше →

Сравнение одинакового проекта в Rust, Haskell, C++, Python, Scala и OCaml

Reading time16 min
Views45K
В последнем семестре университета я выбрал курс компиляторов CS444. Там каждая группа из 1-3 человек должна была написать компилятор из существенного подмножества Java в x86. Язык на выбор группы. Это была редкая возможность сравнить реализации больших программ одинаковой функциональности, написанных очень компетентными программистами на разных языках, и сравнить разницу в дизайне и выборе языка. Такое сравнение породило массу интересных мыслей. Редко можно встретить такое контролируемое сравнение языков. Оно не идеально, но намного лучше, чем большинство субъективных историй, на которых основано мнение людей о языках программирования.

Мы сделали наш компилятор на Rust, и сначала я сравнил его с проектом команды на Haskell. Я ожидал, что их программа будет намного короче, но она оказалась того же размера или больше. То же самое для OCaml. Затем сравнил с компилятором на C++, и там вполне ожидаемо компилятор был примерно на 30% больше, в основном, из-за заголовков, отсутствия типов sum и сопоставлений с образцом. Следующее сравнение было с моей подругой, которая сделала компилятор самостоятельно на Python и использовала менее половины кода, по сравнению с нами, из-за мощности метапрограммирования и динамических типов. У другого товарища программа на Scala тоже была меньше нашей. Больше всего меня удивило сравнение с другой командой, которая тоже использовала Rust, но у них оказалось в три раза больше кода из-за разных дизайнерских решений. В конце концов, самая большая разница в количестве кода оказалась в пределах одного языка!
Читать дальше →

Deep Learning в вычислении оптического потока

Reading time11 min
Views21K
С появлением множества различных архитектур нейронных сетей, многие классические Computer Vision методы ушли в прошлое. Все реже люди используют SIFT и HOG для object detection, а MBH для action recognition, а если и используют, то скорее как handcrafted-признаки для соответствующих сеток. Сегодня мы рассмотрим одну из классических CV-задач, в которой первенство по-прежнему остается за классическими методами, а DL-архитектуры томно дышат им в затылок.


3D-реконструкция лиц по фотографии и их анимация с помощью видео. Лекция в Яндексе

Reading time11 min
Views9.4K
В фильме «Миссия невыполнима 3» был показан процесс создания знаменитых шпионских масок, благодаря которым одни персонажи становятся неотличимы от других. По сюжету, сначала требовалось сфотографировать того, в кого герой хотел превратиться, с нескольких ракурсов. В 2018 году простую 3D-модель лица можно пусть и не напечатать, но, по крайней мере, создать в цифровом виде — причём на основе всего одной фотографии. Научный сотрудник VisionLabs подробно описал процесс на мероприятии Яндекса «Мир глазами роботов» из серии Data&Science — с детализацией до конкретных методов и формул.


— Добрый день. Меня зовут Николай, я работаю в компании VisionLabs, которая занимается компьютерным зрением. Наш основной профиль — распознавание лиц, но также у нас есть технологии, которые применимы в дополненной и виртуальной реальности. В частности, у нас есть технология построения 3D-лица по одному фото, и сегодня я буду рассказывать о ней.

Никита Шамгунов рассказал The Bell про работу в Microsoft и Facebook, разговор с Гейтсом и базу данных MemSQL

Reading time4 min
Views17K

Фото: РБК

Вчера The Bell опубликовал интервью с Никитой Шамгуновым. Они назвали его одним из лучших программистов в России, и даже если не быть категоричными, он действительно крут. С детства изучал математику и компьютерные науки, занял третье место на чемпионате мира по спортивному программированию, работал в Microsoft и Facebook, а затем создал свою базу данных MemSQL, которую используют Uber, Samsung, Comcast и многие другие.

Мы выбрали из интервью самые интересные цитаты.

Знакомство с Neural ODE

Reading time20 min
Views40K

Neural Ordinary Differential Equations


Значительная доля процессов описывается дифференциальными уравнениями, это могут быть эволюция физической системы во времени, медицинское состояние пациента, фундаментальные характеристики фондового рынка и т.д. Данные о таких процессах последовательны и непрерывны по своей природе, в том смысле, что наблюдения — это просто проявления какого-то непрерывно изменяющегося состояния.

Есть также и другой тип последовательных данных, это дискретные данные, например, данные NLP задач. Состояния в таких данных меняется дискретно: от одного символа или слова к другому.

Сейчас оба типа таких последовательных данных обычно обрабатываются рекуррентными сетями, несмотря на то, что они отличны по своей природе, и похоже, требуют различных подходов.

На последней NIPS-конференции была представлена одна очень интересная статья, которая может помочь решить эту проблему. Авторы предлагают подход, который они назвали Нейронные Обыкновенные Дифференциальные Уравнения (Neural ODE).

Здесь я постарался воспроизвести и кратко изложить результаты этой статьи, чтобы сделать знакомство с ее идеей чуть более простым. Мне кажется, что эта новая архитектура вполне может найти место в стандартном инструментарии дата-сайентиста наряду со сверточными и рекуррентными сетями.


Читать дальше →

GPT-2 нейросеть от OpenAI. Быстрый старт

Reading time9 min
Views146K

image


Не успели отшуметь новости о нейросети BERT от Google, показавшей state-of-the-art результаты на целом ряде разговорных (NLP) задач в машинном обучении, как OpenAI выкатили новую разработку: GPT-2. Это нейронная сеть с рекордным на данный момент числом параметров (1.5 млрд, против обычно используемых в таких случаях 100-300 млн) оказалась способна генерировать целые страницы связного текста.


Генерировать настолько хорошо, что в OpenAI отказались выкладывать полную версию, опасаясь что эту нейросеть будут использовать для создания фейковых новостей, комментариев и отзывов, неотличимых от настоящих.


Тем не менее, в OpenAI выложили в общий доступ уменьшенную версию нейросети GPT-2, со 117 млн параметров. Именно ее мы запустим через сервис Google Colab и поэкспериментруем с ней.

Читать дальше →

Немного про коническую двойственность

Reading time2 min
Views5.5K
При изучении теоретических курсов по машинному обучению (мат. экономике, оптимизации, финансам и т.д.) часто встречается понятие «двойственной задачи».

Двойственные задачи часто используются для получения нижних (или верхних) оценок на целевой функционал в задачах оптимизации. Кроме этого, почти для любой осмысленной постановки задачи оптимизации двойственная задача имеет содержательную интерпретацию. То есть если Вы столкнулись с важной задачей оптимизации, то и ее двойственная тоже, скорее всего, важна.

В этой статье я расскажу про коническую двойственность. Этот способ построения двойственных задач, на мой взгляд, незаслуженно обделен вниманием…

Дальше матан…
Читать дальше →

Введение в робастную оптимизацию [… и маленький листочек со списком покупок, который я забыл...]

Reading time8 min
Views6.3K
Как определить, сколько людей нужно нанять на новый fulfillment, чем именно его заполнить и куда положить конкретный товар? Чем больше становится бизнес, тем выше неопределенность и тем дороже стоит ошибка. Победить хаос и выбрать оптимальное решение — одна из задач команды data science. А поскольку в основе анализа данных — математика, с нее и начнём.

В этом посте мы рассмотрим задачи оптимизации с неопределенностью в данных и их аппроксимацию детерминированными выпуклыми задачами. Это один из основных трюков в робастной оптимизации — технике, позволяющей справляться с задачами оптимизации, слишком чувствительными к изменению входных данных.

Вопрос чувствительности очень важен. Для задач, качество решения которых слабо зависит от изменения в данных, проще использовать привычную стохастическую оптимизацию. Однако в задачах с высокой чувствительностью этот подход будет давать плохой результат. Таких задач много в финансах, управлении поставками, проектировании и многих других областях.

И да, это пример поста, где сложность растет экспоненциально (сорян уж)…
Читать дальше →

Обзор основных методов математической оптимизации для задач с ограничениями

Reading time7 min
Views64K
Я долго готовился и собирал материал, надеюсь в этот раз получилось лучше. Эту статью посвящаю основным методам решения задач математической оптимизации с ограничениями, так что если вы слышали, что симплекс-метод — это какой-то очень важный метод, но до сих пор не знаете, что он делает, то возможно эта статья вам поможет.

P. S. Статья содержит математические формулы, добавленные макросами хабраредактора. Говорят, что они иногда не отображаются. Также есть много анимаций в формате gif.
Читать дальше →

Много иероглифов – много нейросетей: как построить эффективную систему распознавания для большого числа классов?

Reading time7 min
Views8.7K
В прошлых статьях уже писали о том, как у нас устроены технологии распознавания текста:


Примерно так же до 2018 года было устроено распознавание японских и китайских символов: в первую очередь с использованием растровых и признаковых классификаторов. Но с распознаванием иероглифов есть свои трудности:

  1. Огромное количество классов, которое нужно различать.
  2. Более сложное устройство символа в целом.

image

Сказать однозначно, сколько символов насчитывает китайская письменность, так же сложно, как точно посчитать, сколько слов в русском языке. Но наиболее часто в китайской письменности используются ~10 000 символов. Ими мы и ограничили число классов, используемых при распознавании.

Обе описанные выше проблемы также приводят и к тому, что для достижения высокого качества приходится использовать большое количество признаков и сами эти признаки вычисляются на изображениях символов дольше.

Чтобы эти проблемы не приводили к сильнейшим замедлениям во всей системе распознавания, приходилось использовать множество эвристик, в первую очередь направленных на то, чтобы быстро отсечь значительное количество иероглифов, на которые эта картинка точно не похожа. Это всё равно не до конца помогало, а нам хотелось вывести наши технологии на качественно новый уровень.

Мы стали исследовать применимость свёрточных нейронных сетей, чтобы поднять как качество, так и скорость распознавания иероглифов. Хотелось заменить весь блок распознавания отдельного символа для этих языков с помощью нейронных сетей. В этой статье мы расскажем, как нам в итоге это удалось.
Читать дальше →

Аппликативные парсеры на Haskell

Reading time13 min
Views17K


Мотивация


Когда я только начинала осваивать Haskell, меня очень раздражало повсеместное использование сложных абстракций вместо каких-то конкретных решений. Мне казалось, что гораздо лучше всегда следовать принципу KISS и писать велосипеды с использованием элементарных конструкций языка, чем разбираться во всех этих классах типов, чтобы где-то в итоге написать одну якобы удобную конструкцию.


Мне не хватало хорошего примера, где бы окупались усилия, потраченные на освоение "матчасти". Для меня одним из самых удачных таких примеров оказались парсеры. Теперь я довольно часто рассказываю про них, когда у меня спрашивают, для каких распространённых задач можно красиво использовать Haskell.


Я хочу предложить начинающим тоже пройти этот путь и создать с нуля небольшую базу функций для удобной реализации парсеров, а затем использовать её для написания собственного парсера, код которого будет практически дословно повторять грамматику, по которой осуществляется разбор.


Надеюсь, кому-то это поможет перебороть страх абстракций и научит уместно их использовать (да, я всё ещё считаю, что иногда бывает эффективней написать велосипед).

Читать дальше →

Обучение и тестирование нейронных сетей на PyTorch с помощью Ignite

Reading time17 min
Views38K

Привет, Хабр, в этой статье я расскажу про библиотеку ignite, с помощью которой можно легко обучать и тестировать нейронные сети, используя фреймворк PyTorch.


С помощью ignite можно писать циклы для обучения сети буквально в несколько строк, добавлять из коробки расчет стандартных метрик, сохранять модель и т.д. Ну, а для тех кто переехал с TF на PyTorch, можно сказать, что библиотека ignite — Keras для PyTorch.


В статье будет детально разобран пример обучения нейронной сети для задачи классификации, используя ignite


Читать дальше →

Иголка в стоге сессий, или Байт-код регулярных выражений

Reading time11 min
Views16K


17 млрд событий, 60 млн пользовательских сессий и огромное количество виртуальных свиданий происходят в Badoo ежедневно. Каждое событие аккуратно сохраняется в реляционные базы данных для последующего анализа на SQL и не только.


Современные распределённые транзакционные базы данных с десятками терабайт данных — настоящее чудо инженерной мысли. Но SQL как воплощение реляционной алгебры в большинстве стандартных реализаций пока не позволяет формулировать запросы в терминах упорядоченных кортежей.


В последней статье из серии, посвящённой виртуальным машинам, я расскажу про альтернативный подход к поиску интересных сессий — движок регулярных выражений («Поросячий Матчер»), определённых для последовательностей событий.


Виртуальная машина, байт-код и компилятор прилагаются бесплатно!

Читать дальше →

Как Яндекс применил компьютерное зрение для повышения качества видеотрансляций. Технология DeepHD

Reading time7 min
Views72K
Когда люди ищут в интернете картинку или видео, они часто прибавляют к запросу фразу «в хорошем качестве». Под качеством обычно имеется в виду разрешение — пользователи хотят, чтобы изображение было большим и при этом хорошо выглядело на экране современного компьютера, смартфона или телевизора. Но что делать, если источника в хорошем качестве просто не существует?

Сегодня мы расскажем читателям Хабра о том, как с помощью нейронных сетей нам удается повышать разрешение видео в режиме реального времени. Вы также узнаете, чем отличается теоретический подход к решению этой задачи от практического. Если вам не интересны технические детали, то можно смело пролистать пост – в конце вас ждут примеры нашей работы.



В интернете много видеоконтента в низком качестве и разрешении. Это могут быть фильмы, снятые десятки лет назад, или трансляции тв-каналов, которые по разным причинам проводятся не в лучшем качестве. Когда пользователи растягивают такое видео на весь экран, то изображение становится мутным и нечётким. Идеальным решением для старых фильмов было бы найти оригинал плёнки, отсканировать на современном оборудовании и отреставрировать вручную, но это не всегда возможно. С трансляциями всё ещё сложнее – их нужно обрабатывать в прямом эфире. В связи с этим наиболее приемлемый для нас вариант работы — увеличивать разрешение и вычищать артефакты, используя технологии компьютерного зрения.

C++20 и Modules, Networking, Coroutines, Ranges, Graphics. Итоги встречи в Сан-Диего

Reading time8 min
Views30K
До C++20 осталась пара лет, а значит, не за горами feature freeze. В скором времени международный комитет сосредоточится на причёсывании черновика C++20, а нововведения будут добавляться уже в C++23.

Ноябрьская встреча в Сан-Диего — предпоследняя перед feature freeze. Какие новинки появятся в C++20, что из крупных вещей приняли, а что отклонили — всё это ждёт вас под катом.


Читать дальше →

Information

Rating
Does not participate
Registered
Activity