Встретимся «внутри»!
50 оттенков matplotlib — The Master Plots (с полным кодом на Python)
Встретимся «внутри»!
User
В современном мире нейронные сети находят себе всё больше применений в различных областях науки и бизнеса. Причем чем сложнее задача, тем более сложной получается нейросеть.
Обучение сложных нейронных сетей иногда может занимать дни и недели только для одной конфигурации. А чтобы подобрать оптимальную конфигурацию для конкретной задачи, требуется запустить обучение несколько раз — это может занять месяцы вычислений даже на действительно мощной машине.
В какой-то момент, знакомясь с представленным в 2015 году методом Batch Normalization от компании Google мне, для решения задачи связанной с распознаванием лиц, удалось существенно улучшить скорость работы нейросети.
За подробностями прошу под кат.
Приветствую тебя, Хабр! Наверняка вы заметили, что тема стилизации фотографий под различные художественные стили активно обсуждается в этих ваших интернетах. Читая все эти популярные статьи, вы можете подумать, что под капотом этих приложений творится магия, и нейронная сеть действительно фантазирует и перерисовывает изображение с нуля. Так уж получилось, что наша команда столкнулась с подобной задачей: в рамках внутрикорпоративного хакатона мы сделали стилизацию видео, т.к. приложение для фоточек уже было. В этом посте мы с вами разберемся, как это сеть "перерисовывает" изображения, и разберем статьи, благодаря которым это стало возможно. Рекомендую ознакомиться с прошлым постом перед прочтением этого материала и вообще с основами сверточных нейронных сетей. Вас ждет немного формул, немного кода (примеры я буду приводить на Theano и Lasagne), а также много картинок. Этот пост построен в хронологическом порядке появления статей и, соответственно, самих идей. Иногда я буду его разбавлять нашим недавним опытом. Вот вам мальчик из ада для привлечения внимания.
Привет, Хабр! Этой статьёй я открываю цикл материалов, посвящённых работе с большими данными. Зачем? Хочется сохранить накопленный опыт, свой и команды, так скажем, в энциклопедическом формате – наверняка кому-то он будет полезен.
Проблематику больших данных постараемся описывать с разных сторон: основные принципы работы с данными, инструменты, примеры решения практических задач. Отдельное внимание окажем теме машинного обучения.
Начинать надо от простого к сложному, поэтому первая статья – о принципах работы с большими данными и парадигме MapReduce.