
В данной статье рассмотрим архитектуры простых и эффективных KV-хранилищ с использованием цепной репликации (chain replication), которая активно исследуется и успешно применяется в различных системах.
Golang и распределенные системы
Rust — это молодой и амбициозный язык для системного программирования. В нем реализовано автоматическое управление памятью без сборщика мусора и прочих накладных расходов времени исполнения. Кроме этого, в языке Rust используется семантика перемещения по умолчанию, имеются беспрецендентные правила обращения к изменяемым данным, а также учитываются времена жизни ссылок. Это позволяет ему гарантировать безопасность памяти и облегчает многопоточное программирование, ввиду отсутствия гонок данных.
Все это уже хорошо известно всем, кто хоть немного следит за развитием современных технологий программирования. Но что если вы не системный программист, да и многопоточного кода в ваших проектах не много, но вас все же привлекает производительность Rust'а. Получите ли вы какие-то дополнительные преимущества от его использования в прикладных задачах? Или все, что он вам даст дополнительно — это суровую борьбу с компилятором, который будет заставлять вас писать программу так, чтобы она неотступно следовала правилам языка по заимствованию и владению?
В данной статье собран десяток неочевидных и особо не рекламируемых преимуществ использования Rust, которые, я надеюсь, помогут вам определиться с выбором этого языка для ваших проектов.
Не так давно на Хабре появилась отличная и вдохновляющая статья про компиляторы и стековые машины. В ней показывается путь от простой реализации исполнителя байт-кода ко всё более и более эффективным версиям. Мне захотелось показать на примере разработки стековой машины, как это можно сделать Haskell-way.
На примере интерпретации языка для стековой машины мы увидим, как математическая концепция полугрупп и моноидов помогает разрабатывать и расширять архитектуру программы, как можно использовать алгебру моноидов и каким образом можно строить программы в форме набора гомоморфизмов между алгебраическими системами. В качестве рабочих примеров мы сначала построим интерпретатор, неотделимый от кода в виде EDSL, а потом научим его разным штукам: вести запись произвольной отладочной информации, отделять код программы от самой программы, проводить простой статический анализ и вычислять с различными эффектами.
Статья рассчитана на тех, кто владеет языком Haskell на среднем уровне и выше, на тех, кто его уже использует в работе или исследованиях и на всех любопытных, заглянувших поглядеть чего это функциональщики ещё понаворотили. Ну, и для тех, конечно, кого не испугал предыдущий абзац.
Можете пояснить что вам не нравится в современной записи (математических положений и) формул и как ее можно улучшить?Я постарался ответить в одном комментарии, но размер текстового поля не позволил закончить выкладки. Данная статья —
С выходом нового React 16.6.0 в документации появился HOOKS (PROPOSAL). Они сейчас доступны в react 17.0.0-alpha и обсуждаются в открытом RFC: React Hooks. Давайте разберемся что это такое и зачем это нужно под катом.
Мы с племянником решили внести свою лепту в дело противодействия фишингу и подготовили памятку. Распространяется безвозмездно. Вы можете скачать её и, распечатав, повесить у себя в офисе; разместить в посте в социальных сетях, добавить в буклет или книгу.
Вот памятка:
A теперь пояснения, почему фишинг всё ещё актуален, и почему он останется таковым и в будущем.
Софту мы не доверяем уже давно, и поэтому осуществляем его аудит, проводим обратную инженерию, прогоняем в пошаговом режиме, запускаем в песочнице. Что же насчёт процессора, на котором выполняется наш софт? – Мы слепо и беззаветно доверяем этому маленькому кусочку кремния. Однако современное железо имеет те же самые проблемы, что и софт: секретную недокументированную функциональность, ошибки, уязвимости, малварь, трояны, руткиты, бэкдоры.
ISA (Instruction Set Architecture) x86 – одна из самых долгих непрерывно изменяющихся «архитектур набора команд» в истории. Начиная с дизайна 8086, разработанного в 1976 году, ISA претерпевает постоянные изменения и обновления; сохраняя при этом обратную совместимость и поддержку исходной спецификации. За 40 лет своего взросления, архитектура ISA обросла и продолжает обрастать множеством новых режимов и наборов инструкций, каждый из которых добавляет к предшествующему дизайну, и без того перегруженному, новый слой. Из-за политики полной обратной совместимости, в современных процессорах x86 присутствуют даже те инструкции и режимы, которые на сегодняшний день уже преданы полному забвению. В результате мы имеем архитектуру процессора, которая представляет собой сложно переплетающийся лабиринт новых и антикварных технологий. Такая чрезвычайно сложная среда – порождает множество проблем с кибербезопасностью процессора. Поэтому процессоры x86 не могут претендовать на роль доверенного корня критической киберинфраструктуры.
Цель данной статьи – показать на примере зачем нужно reactive programming, как оно связано с функциональным программированием, и как с его помощью можно писать декларативный код, который легко адаптировать к новым требованиям. Кроме того, хочется сделать это максимально кратко и просто на примере приближенном к реальному.
Возьмем такую задачу:
Есть некий сервис c REST API и endpointом /people
. При POST-запросе на этот endpoint'a создается новая сущность. Написать функцию которая принимает массив объектов вида { name: 'Max' }
и создают набор сущностей посредством API(по-английски, это называется batch-операция).
Давайте решим эту задачу в императивном стиле:
const request = require('superagent')
function batchCreate(bodies) {
const calls = []
for (let body of bodies) {
calls.push(
request
.post('/people')
.send(body)
.then(r => r.status)
)
}
return Promise.all(calls)
}
Давайте, для сравнения, перепишем этот кусочек кода в функциональном стиле. Для простоты, под функциональным стилем мы будем понимать: