Search
Write a publication
Pull to refresh
18
0
Олег @OlegUV

Аналитик

Send message

R — значит регрессия

Reading time8 min
Views83K

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.


Регрессия


Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Читать дальше →

Git: советы новичкам – часть 3

Reading time6 min
Views68K

В финальной части нашей серии статей о работе с Git мы продолжим разговор о ветках, рассмотрим особенности работы с командой push и расскажем, что такое rebase. Первую и вторую статьи серии вы можете прочитать по ссылкам.
Читать дальше →

Почему я ушёл из Google и начал работать на себя

Reading time10 min
Views143K
Последние четыре года я работал разработчиком программного обеспечения в Google, но 1 февраля уволился, потому что они не сделали мне подарок на Рождество.

Шучу, на самом деле всё немного сложнее.

Первые два года


Первые два года я любил Google.

Когда при ежегодном опросе сотрудников мне задавали вопрос, вижу ли я себя в Google через пять лет, я отвечал «разумеется, без вариантов».

Ну конечно я буду в Google через пять лет. Я окружён лучшими инженерами в мире, использую самые продвинутые инструменты разработки в мире и кушаю самую бесплатную в мире еду.


Мой обычный день в Google.
— Ещё тортика, господин Программист? Он бесплатен в любом количестве.
— Не сегодня, Пьер. Я опаздываю на массаж, он тоже бесплатный.

Читать дальше →

Как я нашел работу в Сан Франциско

Reading time5 min
Views52K
Все, что я здесь пишу — это мой личный опыт и наблюдения. За то время, что я искал работу, столкнулся с тем, что в интернете очень много, мягко говоря, противоречивой информации по данной теме. Все люди очень разные, ситуации у всех очень разные — то, что сработало со мной, не сработает с вами, и наоборот. Поэтому мой текст нужно воспринимать не как инструкцию, а как просто одну из историй о том, как можно найти работу в Сан Франциско.

Кроме того, важно иметь в виду, что описаный в статье опыт актуален на момент написания (сентябрь 2014 года). Экономическая ситуация меняется, иммиграционное законодательство тоже (по крайней мере, в теории), это все тоже нужно учитывать.
Читать дальше →

Как найти компанию спонсора визы в США. Tips and Tricks

Reading time9 min
Views93K

image


Статья для тех, кто хочет переехать работать в США. На Хабре есть несколько хороших статей про поиск работы в Америке. Тут я постараюсь добавить к ним собственный опыт и поделиться несколькими приемами, которые помогли мне получить долгожданный джоб оффер.


Сперва расскажу про рабочие визы, а потом как и где искать работодателя.

Читать дальше →

Статистика Backblaze, научный подход к анализу надёжности накопителей

Reading time6 min
Views7.8K

Фирма Backblaze регулярно публикует статистику по отказам своих жёстких дисков, и даже выложила в свободный доступ полный архов со статистикой S.M.A.R.T параметров всех своих накопителей.


В этой статье я покажу как с помощью при помощи лома и какой-то матери с помощью научных методов рассчитывать надёжность накопителей.

Читать дальше →

Лучшие пакеты для работы с данными в R, часть 1

Reading time6 min
Views10K
Есть два отличных пакета для работы с данными в R — dplyr и data.table. У каждого пакета свои сильные стороны. dplyr элегантнее и похож на естественный язык, в то время как data.table лаконичный, с его помощью многое можно сделать всего в одну строку. Более того, в некоторых случаях data.table быстрее (сравнительный анализ доступен здесь), и это может определить выбор, если есть ограничения по памяти или производительности. Сравнение dplyr и data.table можно также почитать на Stack Overflow и Quora.

Здесь можно найти руководство и краткое описание data.table, а здесь — для dplyr. Также можно почитать обучающие материалы по dplyr на DataScience+.
Читать дальше →

Лучшие пакеты для машинного обучения в R, часть 1

Reading time5 min
Views19K
Один из наиболее частых вопросов, с которыми сталкиваются специалисты по обработке и анализу данных — «Какой язык программирования лучше всего использовать для решения задач, связанных с машинным обучением?» Ответ на этот вопрос всегда приводит к сложному выбору между R, Python и MATLAB. Вообще говоря, никто не может дать объективный ответ, какой же язык программирования лучше. Конечно, язык, который вы выбираете для машинного обучения, зависит от ограничений конкретной задачи и данных, предпочтений самого специалиста и тех методов машинного обучения, которые нужно будет применить. Согласно опросу о любимом инструменте пользователей Kaggle для решения задач анализа данных R предпочитают 543 из 1714.

Сейчас в CRAN доступен 8341 пакет. Кроме CRAN, есть и другие репозитории с большим количеством пакетов. Синтаксис для установки любого из них прост: install.packages(“Name_Of_R_Package”).

Вот несколько пакетов, без которых вы вряд ли обойдетесь, как специалист по анализу данных: dplyr, ggplot2, reshape2. Безусловно, это не полный список. В этой статье мы подробнее остановимся на пакетах, применяемых в машинном обучении.
Читать дальше →

Лучшие пакеты для машинного обучения в R, часть 2

Reading time6 min
Views11K
Один из наиболее частых вопросов, с которыми сталкиваются специалисты по обработке и анализу данных — «Какой язык программирования лучше всего использовать для решения задач, связанных с машинным обучением?» Ответ на этот вопрос всегда приводит к сложному выбору между R, Python и MATLAB. Вообще говоря, никто не может дать объективный ответ, какой же язык программирования лучше. Конечно, язык, который вы выбираете для машинного обучения, зависит от ограничений конкретной задачи и данных, предпочтений самого специалиста и тех методов машинного обучения, которые нужно будет применить. Согласно опросу о любимом инструменте пользователей Kaggle для решения задач анализа данных R предпочитают 543 из 1714.

Сейчас в CRAN доступен 8341 пакет. Кроме CRAN, есть и другие репозитории с большим количеством пакетов. Синтаксис для установки любого из них прост: install.packages(“Name_Of_R_Package”).

Вот несколько пакетов, без которых вы вряд ли обойдетесь, как специалист по анализу данных: dplyr, ggplot2, reshape2. Безусловно, это не полный список. В этой статье мы подробнее остановимся на пакетах, применяемых в машинном обучении.
Читать дальше →

Использование apply, sapply, lapply в R

Reading time5 min
Views47K
Это вводная статья об использовании apply, sapply и lapply, она лучше всего подходит для людей, которые недавно работают с R или незнакомы с этими функциями. Я приведу несколько примеров использования функций семейства apply, поскольку они часто применяются при работе в R.

Я сравнивал эти три метода на наборе данных. Была сгенерирована выборка, и они к ней применялись. Хотелось посмотреть, чем отличаются результаты их применения.

Также использовался тестовый стенд, который возвращал матрицу. В ней было три колонки и около 30 строк. Выглядело примерно так:

method1  method2    method3 
[1,] 0.05517714 0.014054038 0.017260447
[2,] 0.08367678 0.003570883 0.004289079
[3,] 0.05274706 0.028629661 0.071323030
[4,] 0.06769936 0.048446559 0.057432519
[5,] 0.06875188 0.019782518 0.080564474 
[6,] 0.04913779 0.100062929 0.102208706

Такие данные можно симулировать с помощью rnorm, чтобы создать три набора. Первый — со средним, равным 0, второй — со средним 2, третий — со средним 5, и 30 строк.

m <- matrix(data=cbind(rnorm(30, 0), rnorm(30, 2), rnorm(30, 5)), nrow=30, ncol=3)
Читать дальше →

Стратегии по ускорению кода на R, часть 1

Reading time3 min
Views7.3K
Цикл for в R может быть очень медленным, если он применяется в чистом виде, без оптимизации, особенно когда приходится иметь дело с большими наборами данных. Есть ряд способов сделать ваш код быстрее, и вы, вероятно, будете удивлены, узнав насколько.

Эта статья описывает несколько подходов, в том числе простые изменения в логике, параллельную обработку и Rcpp, увеличивая скорость на несколько порядков, так что можно будет нормально обрабатывать 100 миллионов строк данных или даже больше.

Давайте попробуем ускорить код с циклом for и условным оператором (if-else) для создания колонки, которая добавляется к набору данных (data frame, df). Код ниже создает этот начальный набор данных.
# Создание набора данных
col1 <- runif (12^5, 0, 2)
col2 <- rnorm (12^5, 0, 2)
col3 <- rpois (12^5, 3)
col4 <- rchisq (12^5, 2)
df <- data.frame (col1, col2, col3, col4)

В этой части: векторизация, только истинные условия, ifelse.
В следующей части: which, apply, побайтовая компиляция, Rcpp, data.table.
Читать дальше →

Стратегии по ускорению кода на R, часть 2

Reading time4 min
Views4.4K
Цикл for в R может быть очень медленным, если он применяется в чистом виде, без оптимизации, особенно когда приходится иметь дело с большими наборами данных. Есть ряд способов сделать ваш код быстрее, и вы, вероятно, будете удивлены, узнав насколько.

Эта статья описывает несколько подходов, в том числе простые изменения в логике, параллельную обработку и Rcpp, увеличивая скорость на несколько порядков, так что можно будет нормально обрабатывать 100 миллионов строк данных или даже больше.

Давайте попробуем ускорить код с циклом for и условным оператором (if-else) для создания колонки, которая добавляется к набору данных (data frame, df). Код ниже создает этот начальный набор данных.
# Создание набора данных
col1 <- runif (12^5, 0, 2)
col2 <- rnorm (12^5, 0, 2)
col3 <- rpois (12^5, 3)
col4 <- rchisq (12^5, 2)
df <- data.frame (col1, col2, col3, col4)

В первой части: векторизация, только истинные условия, ifelse.
В этой части: which, apply, побайтовая компиляция, Rcpp, data.table, результаты.
Читать дальше →

Анализ тональности высказываний в Twitter: реализация с примером на R

Reading time10 min
Views19K
Социальные сети (Twitter, Facebook, LinkedIn) — пожалуй, самая популярная бесплатная доступная широкой общественности площадка для высказывания мыслей по разным поводам. Миллионы твитов (постов) ежедневно — там кроется огромное количество информации. В частности, Twitter широко используется компаниями и обычными людьми для описания состояния дел, продвижения продуктов или услуг. Twitter также является прекрасным источником данных для проведения интеллектуального анализа текстов: начиная с логики поведения, событий, тональности высказываний и заканчивая предсказанием трендов на рынке ценных бумаг. Там кроется огромный массив информации для интеллектуального и контекстуального анализа текстов.

В этой статье я покажу, как проводить простой анализ тональности высказываний. Мы загрузим twitter-сообщения по определенной теме и сравним их с базой данных позитивных и негативных слов. Отношение найденных позитивных и негативных слов называют отношением тональности. Мы также создадим функции для нахождения наиболее часто встречающихся слов. Эти слова могут дать полезную контекстуальную информацию об общественном мнении и тональности высказываний. Массив данных для позитивных и негативных слов, выражающих мнение (тональных слов) взят из Хью и Лью, KDD-2004.

Реализация на R с применением twitteR, dplyr, stringr, ggplot2, tm, SnowballC, qdap и wordcloud. Перед применением нужно установить и загрузить эти пакеты, используя команды install.packages() и library().
Читать дальше →

R как спасательный круг для системного администратора

Reading time3 min
Views12K

Мотивом для этой публикации послужил доклад «Using the R Software for Log File Analysis» на конференции USENIX, который был обнаружен в интернете при поиске ответов на очередные вопросы. Поскольку была написана целая печатная статья, логично предположить, что тема обладает актуальность. Поэтому решил поделиться примерами решения подобного рода задач, решению которых не придавалось такого значения. Фактически, «заметки на полях».
R, действительно, очень хорошо подходит для подобных задач.


Является продолжением предыдущих публикаций.


Читать дальше →

Торговая стратегия для торговли коинтегрированными парами акций

Reading time8 min
Views9.3K
Цель данной статьи — поделиться простейшей стратегией статистического арбитража, основанной на торговле коинтегрированными парами акций, которые были выявлены на Московской и Нью-Йоркской биржах.

Если мы возьмём пару коинтегрированных акций, то у нас есть возможность захеджироваться и построить рыночно-нейтральную стратегию, когда убытки по одной бумаге будут компенсироваться прибылями по другой. Как это выглядит на практике?
Читать дальше →

«HR-аналитика» средствами R

Reading time4 min
Views8.6K

Является продолжением предыдущих публикаций.


Неожиданно оказалось, что для одной из задач, которую пришлось решать примерно год назад, а именно оценка «надежности» большого коллектива, нынче есть весьма популярное название «HR аналитика». Актуализируя в рамках новой задачи материалы, вышел на просторах российского интернета на информативный блог по теме HR-аналитики. Собственно говоря, этот блог + обсуждение вопросов с его автором Эдуардом Бабушкиным и послужили отправной точкой для пересмотра проблематики.


Настоящая публикация носит, скорее, дискуссионно-аналитический характер, нежели утверждающий. Какие подходы и методы оптимальны для задачи HR аналитики, что можно сделать средствами R. Эта неоднозначность вызвана тем, что объектом исследования являются не явления природы, а поведение людей, которое не всегда логично и предсказуемо, особенно при переходе от коллектива к отдельному человеку.


Читать дальше →

20+ ресурсов, чтобы начать фрилансить

Reading time3 min
Views728K
Чувствуете, что готовы уйти с работы, самостоятельно контролировать свой день, биться за клиента и работать только над интересными задачами? Пришло время попробовать себя во фрилансе. Это совсем нелегко, а чаще труднее, чем офисная рутина. Чтобы не разочароваться в выборе формата работы, устройте себе тест-драйв — на праздниках или в выходные. Собрали площадки, где найдете задачи по душе.


Читать дальше →

Оформление базовой графики R

Reading time3 min
Views19K

Базовая графика в R плоха для печати (если честно, можно было получше выбрать значения по умолчанию). В целом, эти функции для некоторых — признак заката эры R. Думаю, большинство людей согласится, что есть в R графические функции и получше (например, ggplot2). Но иногда бывет целесообразно сделать график именно с помощью базовых функций. Например, если графика в вашей публикации должна быть воспроизводима даже спустя пять лет.

В этом посте рассмотрим методы, позволяющие кардинально изменить внешний вид базовой графики в R. С некоторыми (окей, иногда большими) усилиями можно изменить все параметры графика именно так, как вам нужно.
Читать дальше →

Визуализация статистики производительности оборудования с R – Shiny

Reading time10 min
Views20K
«Безграмотными в 21 веке будут не те,
кто не умеет читать и писать,
а те, кто не умеет учиться,
разучиваться и переучиваться»

Элвин Тоффлер

У ИТ-специалистов могут возникать задачи, связанные с анализом производительности оборудования или анализом результатов различных генераторов нагрузки (ioMeter, Vdbench и прочее). В большинстве случаев для этих целей используется Excel с построением временных рядов, с нахождением основных описательных статистик и попытками это все как-то проанализировать. Существует альтернативное средство более быстрого и удобного анализа описательных статистик с разнообразными диаграммами и возможностью создания web-приложения для общего доступа. Касаться настоящей статистики с различными методами анализа данных не буду, только базовая описательная статистика (без проверки тестов и даже p-значения не будет) и разные диаграммы.

В этой статье я опишу один из вариантов того, как можно проанализировать такую информацию, представлять её в виде диаграмм (трафик!), и все это в виде web-приложения. Как следует из названия статьи – реализовано это на R, с пакетом (фреймворком) для web-приложений к R – Shiny.
Читать дальше →

Просмотр конфигурации массивов Storwize с R – Shiny Dashboard

Reading time4 min
Views5.4K
Дисковые массивы Storwize компании IBM хорошо известны на рынке, а вот с удобным средством просмотра их конфигурации (тем более, не имея доступа к самому массиву), за исключением программного продукта Total Productivity Center от IBM, уже ничего и нет (perl скрипты svcmon более не поддерживаются). А у сотрудников и, или партнеров, анализирующих конфигурации данных массивов, часто возникает такая потребность. Поэтому, я предлагаю свое решение по просмотру xml файлов конфигурации данных массивов.

В этой статье я опишу, как можно прочитать xml информацию, представить её в виде таблиц, сводную информация на дэшбордах, и все это в виде web-приложения. Как следует из названия статьи – реализовано это на R, с пакетом (фреймворком) для web-приложений к R – Shiny dashboard.

image
Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Registered
Activity