Search
Write a publication
Pull to refresh
1
Pavel Danilov @Pashtetikusread⁠-⁠only

User

Send message

Сверточный слой: быстрая свертка по методу Шмуэля Винограда

Reading time8 min
Views11K

Введение


Данная статья является продолжением серии статей описывающей алгоритмы лежащие в основе
Synet — фреймворка для запуска предварительно обученных нейронных сетей на CPU.

В предыдущей статье я описал методы, основанные на матричном умножении. Эти методы с минимальными усилиями позволяют достичь во многих случаях более 80% от теоретического максимума. Казалось бы, ну куда тут можно еще дальше улучшать? Оказывается можно! Существуют математически методы, которые позволяют сократить число операций, необходимых для свертки. С одним из таких методов — алгоритму свертки по методу Винограда мы и ознакомимся в настоящей статье.

image

Шмуэль Виноград (Shmuel Winograd) 1936.01.04 — 2019.03.25 — выдающийся израильский и американский ученый в области компьютерных наук, создатель алгоритмов быстрого матричного умножения, свертки и преобразования Фурье.
Читать дальше →

Нелинейные дифференциальные уравнения, дискретность пространства-времени и эпсилон произведение

Reading time37 min
Views26K
Всё содержание этой статьи является следствием решения задачи уровня первого года институтского курса математического анализа.

Здесь мы вводим новое произведение для решетчатых функций (мы будем называть его эпсилон-умножением), что дает нам возможность увидеть интересную связь между интегрально-дифференциальными уравнениями (в том числе и нелинейными) и рекуррентными соотношениями. Это позволяет с необычного ракурса взглянуть на некоторые методы их решения.

Но, что мне показалось особенно интересным, это то, что новое произведение также позволяет нам «порассуждать» о таких фундаментальных вещах, как непрерывность пространства-времени. Это рассуждение, конечно, нужно рассматривать, скорее, как интеллектуальное упражнение.

Мне показалось, что этот математический ребус или, если хотите, небольшое математическое путешествие на уровне знаний первого-второго курса технического ВУЗа может заинтересовать читателей Хабра, интересующихся математикой.
Читать дальше →

Нейросети и глубокое обучение, глава 1: использование нейросетей для распознавания рукописных цифр

Reading time56 min
Views146K

Примечание


Michael NielsenПеред вами – перевод свободной онлайн-книги Майкла Нильсена «Neural Networks and Deep Learning», распространяемой под лицензией Creative Commons Attribution-NonCommercial 3.0 Unported License. Мотивацией к его созданию послужил успешный опыт перевода учебника по программированию, "Выразительный JavaScript". Книга по нейросетям тоже достаточно популярна, на неё активно ссылаются авторы англоязычных статей. Её переводов я не нашёл, за исключением перевода начала первой главы с сокращениями.

Желающие отблагодарить автора книги могут сделать это на её официальной странице, переводом через PayPal или биткоин. Для поддержки переводчика на Хабре есть форма «поддержать автора».


Введение


Этот учебник подробно расскажет вам о таких понятиях, как:

  • Нейросети — прекрасная программная парадигма, созданная под влиянием биологии, и позволяющая компьютеру учиться на основе наблюдений.
  • Глубокое обучение – мощный набор техник обучения нейросетей.

Нейросети (НС) и глубокое обучение (ГО) на сегодня дают наилучшее решение многих задач из областей распознавания изображений, голоса и обработки естественного языка. Этот учебник научит вас многим ключевым концепциям, лежащим в основе НС и ГО.
Читать дальше →

Нахождение объектов без учителя (Unsupervised Object Detection)

Reading time7 min
Views8.8K
image

Одна из важнейших задач в машинном обучении — детектирование объектов (Object Detection). Недавно был опубликован ряд алгоритмов машинного обучения основанных на глубоком обучении (Deep Learning) для детектирования объектов. Эти алгоритмы занимают одно из центральных мест в практических приложениях компьютерного зрения, в частности, очень популярные сейчас самоуправляемые автомобили (Self-Driving Cars). Но все эти методы являются методами обучения с учителем, т.е. им необходим размеченный набор данных (Dataset) огромного размера. Естественно возникает желание иметь модель способную обучаться на «сырых» (неразмеченных) данных. Я попытался проанализировать существующие методы и также указать возможные пути их развития. Всех желающих милости прошу под кат, будет интересно.
Читать дальше →

Стохастический градиентный спуск(SGD) для логарифмической функции потерь(LogLoss) в задаче бинарной классификации

Reading time4 min
Views11K
Предыдущая часть (про линейную регрессию, градиентный спуск и про то, как оно всё работает) — habr.com/ru/post/471458

В этой статье я покажу решение задачи классификации сначала, что называется, «ручками», без сторонних библиотек для SGD, LogLoss'а и вычисления градиентов, а затем с помощью библиотеки PyTorch.
Читать дальше →

Пережевывая логистическую регрессию

Reading time20 min
Views53K


В этой статье, мы будем разбирать теоретические выкладки преобразования функции линейной регрессии в функцию обратного логит-преобразования (иначе говорят, функцию логистического отклика). Затем, воспользовавшись арсеналом метода максимального правдоподобия, в соответствии с моделью логистической регрессии, выведем функцию потерь Logistic Loss, или другими словами, мы определим функцию, с помощью которой в модели логистической регрессии подбираются параметры вектора весов $\vec{w}$.

План статьи:

  1. Повторим о прямолинейной зависимости между двумя переменными
  2. Выявим необходимость преобразования функции линейной регрессии $ f(w,x_i) = \vec{w}^T \vec{x_i}$ в функцию логистического отклика $\sigma(\vec{w}^T \vec{x_i}) = \frac{1}{1+e^{-\vec{w}^T \vec{x_i}}}$
  3. Проведем преобразования и выведем функцию логистического отклика
  4. Попытаемся понять, чем плох метод наименьших квадратов при подборе параметров $\vec{w}$ функции Logistic Loss
  5. Используем метод максимального правдоподобия для определения функции подбора параметров $\vec{w}$:

    5.1. Случай 1: функция Logistic Loss для объектов с обозначением классов 0 и 1:

    $L_{log}(X,\vec{y},\vec{w}) = \sum\limits_{i=1}^n(-y_i \mkern 2mu log_e \mkern 5mu \sigma(\vec{w}^T \vec{x_i}) - (1-y_i) \mkern 2mu log_e \mkern 5mu (1 - \sigma(\vec{w}^T \vec{x_i})) ) \rightarrow min$



    5.2. Случай 2: функция Logistic Loss для объектов с обозначением классов -1 и +1:

    $L_{log}(X,\vec{y},\vec{w}) = \sum\limits_{i=1}^n \mkern 2mu log_e \mkern 5mu (1+e^{-y_i\vec{w}^T\vec{x_i}}) \rightarrow min$

Читать дальше →

Нейросети и глубокое обучение, глава 3, ч.1: улучшение способа обучения нейросетей

Reading time34 min
Views21K

Когда человек учится играть в гольф, большую часть времени он обычно проводит за постановкой базового удара. К другим ударам он подходит потом, постепенно, изучая те или иные хитрости, основываясь на базовом ударе и развивая его. Сходным образом мы пока что фокусировались на понимании алгоритма обратного распространения. Это наш «базовый удар», основа для обучения для большей части работы с нейросетями (НС). В этой главе я расскажу о наборе техник, которые можно использовать для улучшения нашей простейшей реализации обратного распространения, и улучшить способ обучения НС.

Среди техник, которым мы научимся в этой главе: лучший вариант на роль функции стоимости, а именно функция стоимости с перекрёстной энтропией; четыре т.н. метода регуляризации (регуляризации L1 и L2, исключение нейронов [dropout], искусственное расширение обучающих данных), улучшающих обобщаемость наших НС за пределы обучающих данных; лучший метод инициализации весов сети; набор эвристических методов, помогающих выбирать хорошие гиперпараметры для сети. Я также рассмотрю и несколько других техник, чуть более поверхностно. Эти обсуждения по большей части не зависят друг от друга, поэтому их можно по желанию перепрыгивать. Мы также реализуем множество технологий в рабочем коде и используем их для улучшения результатов, полученных для задачи классификации рукописных цифр, изученной в главе 1.
Читать дальше →

Big O

Level of difficultyEasy
Reading time5 min
Views252K
бинарный поиск
Примечание. Сокращенный перевод, скорее пересказ своими словами.
UPD: как отметили в комментариях, примеры не идеальны. Автор не ищет лучшее решение задачи, его цель объяснить сложность алгоритмов «на пальцах».


Big O нотация нужна для описания сложности алгоритмов. Для этого используется понятие времени. Тема для многих пугающая, программисты избегающие разговоров о «времени порядка N» обычное дело.

Если вы способны оценить код в терминах Big O, скорее всего вас считают «умным парнем». И скорее всего вы пройдете ваше следующее собеседование. Вас не остановит вопрос можно ли уменьшить сложность какого-нибудь куска кода до n log n против n^2.

Структуры данных


Выбор структуры данных зависит от конкретной задачи: от вида данных и алгоритма их обработки. Разнообразные структуры данных (в .NET или Java или Elixir) создавались под определенные типы алгоритмов.

Часто, выбирая ту или иную структуру, мы просто копируем общепринятое решение. В большинстве случаев этого достаточно. Но на самом деле, не разобравшись в сложности алгоритмов, мы не можем сделать осознанный выбор. К теме структур данных можно переходить только после сложности алгоритмов.

Здесь мы будем использовать только массивы чисел (прямо как на собеседовании). Примеры на JavaScript.
Читать дальше →

Типичные распределения вероятности: шпаргалка data scientist-а

Reading time11 min
Views141K

У data scientist-ов сотни распределений вероятности на любой вкус. С чего начать?


Data science, чем бы она там не была – та ещё штука. От какого-нибудь гуру на ваших сходках или хакатонах можно услышать:«Data scientist разбирается в статистике лучше, чем любой программист». Прикладные математики так мстят за то, что статистика уже не так на слуху, как в золотые 20е. У них даже по этому поводу есть своя несмешная диаграмма Венна. И вот, значит, внезапно вы, программист, оказываетесь совершенно не у дел в беседе о доверительных интервалах, вместо того, чтобы привычно ворчать на аналитиков, которые никогда не слышали о проекте Apache Bikeshed, чтобы распределённо форматировать комментарии. Для такой ситуации, чтобы быть в струе и снова стать душой компании – вам нужен экспресс-курс по статистике. Может, не достаточно глубокий, чтобы вы всё понимали, но вполне достаточный, чтобы так могло показаться на первый взгляд.
Читать дальше →

Материалы летней школы Deep|Bayes по байесовским методам в глубинном обучении

Reading time3 min
Views25K

Глубинное обучение в последние годы стало ключевым направлением исследований в машинном обучении. Начавшись с архитектурных прорывов, позволявших эффективно обучать глубокие нейросети, оно стало распространяться на другие подобласти, предоставляя набор эффективных средств там, где для решения задачи требуется приближение некоторой сложной функции.


Многие современные исследовательские статьи активно используют байесовский формализм в сочетании с глубокими нейросетями, приходя к интересным результатам. Мы – исследовательская группа BayesGroup с помощью наших друзей из Сколтеха, а так же при поддержке Высшей Школы Экономики, Сбербанка, Яндекса, Лаборатории Касперского, JetBrains и nVidia – решили поделиться накопленным опытом и устроить летнюю школу по байесовским методам в глубинном обучении Deep|Bayes, где подробно рассказать, что такое байесовские методы, как их комбинировать с глубинным обучением и что из этого может получиться.


Отбор на школу оказался весьма сложным занятием – мы получили более 300 заявок от сильных кандидатов, но вместить смогли только 100 (приятно, что среди участников были не только жители Москвы и Петербурга, но и студенты из регионов, а так же русскоговорящие гости из-за границы). Пришлось отказать многим сильным кандидатам, поэтому для смягчения этого прискорбного факта мы решили сделать доступными максимальное количество материалов, которыми и хотим поделиться с хабраюзерами.

Читать дальше →

Нейросети и глубокое обучение, глава 3, ч.2: почему регуляризация помогает уменьшать переобучение?

Reading time35 min
Views21K

Эмпирически мы увидели, что регуляризация помогает уменьшать переобучение. Это вдохновляет – но, к сожалению, не очевидно, почему регуляризация помогает. Обычно люди объясняют это как-то так: в каком-то смысле, менее крупные веса имеют меньшую сложность, что обеспечивает более простое и действенное объяснение данных, поэтому им надо отдавать предпочтение. Однако это слишком краткое объяснение, а некоторые его части могут показаться сомнительными или загадочными. Давайте-ка развернём эту историю и изучим её критическим взглядом. Для этого предположим, что у нас есть простой набор данных, для которого мы хотим создать модель:

Читать дальше →

Как работают рекомендательные системы. Лекция в Яндексе

Reading time11 min
Views144K

Привет, меня зовут Михаил Ройзнер. Недавно я выступил перед студентами Малого Шада Яндекса с лекцией о том, что такое рекомендательные системы и какие методы там бывают. На основе лекции я подготовил этот пост.





План лекции:


  1. Виды и области применения рекомендательных систем.
  2. Простейшие алгоритмы.
  3. Введение в линейную алгебру.
  4. Алгоритм SVD.
  5. Измерение качества рекомендаций.
  6. Направление развития.

Под катом вы найдете конспект лекции и презентацию

Туториал по Uplift моделированию. Часть 2

Reading time7 min
Views33K


В первой части мы познакомились с uplift моделированием и узнали, что метод позволяет выбирать оптимальную стратегию коммуникации с клиентом, а также разобрали особенности сбора данных для обучения модели и несколько базовых алгоритмов. Однако эти подходы не позволяли оптимизировать uplift напрямую. Поэтому в этой части разберем более сложные, но не менее интересные подходы.
Читать дальше →

ML-Блиц: разбор задач первого квалификационного раунда

Reading time10 min
Views32K

23 июня 2018 года состоялся финал ML-Блица, конкурса по машинному обучению, организованного Яндексом. Ранее мы анонсировали его на Хабре и рассказывали, какие примерно задачи могут встретиться на реальном соревновании.


Теперь мы хотим поделиться с вами разборами задач одного из квалификационных раундов — самого первого. Двое участников сумели решить все задачи этого соревнования; 57 участников решили хотя бы одну задачу, а 110 совершили хотя бы по одной попытке сдать задание.


Хотя автор этих строк принимал участие в составлении задач конкурса, именно в первой квалификации его задачи не принимали участие. Так что я пишу этот разбор с позиции участника конкурса, который впервые увидел условия и хотел как можно быстрее получить как можно больше баллов.


Самым популярным языком программирования среди участников соревнования ожидаемо оказался python, поэтому я также использовал именно этот язык во всех случаях, когда требовалось написать код.


Все мои решения доступны на GitHub


image

Читать дальше →

Как проходят секции по машинному обучению на собеседованиях в Яндекс

Reading time6 min
Views31K

Каждый сервис компании Яндекс во многом основан на анализе данных и методах машинного обучения. Они требуются и для ранжирования результатов веб-поиска, и для поиска по картинкам, и для формирования рекомендательных блоков. Машинное обучение позволяет нам создавать беспилотные автомобили и голосовых ассистентов, уменьшать время бесполезного простоя для таксистов и уменьшать время ожидания для их клиентов. Все приложения и не перечислить!


Поэтому мы всегда испытываем потребность в специалистах по анализу данных и машинному обучению. Одним из важнейших этапов собеседования в Яндекс для них является общая секция по машинному обучению, о которой я и расскажу в этой статье. Пример модельной задачи для этой секции и возможного содержания ответа по ней я разобрал в видео, которое недавно стало доступно на YouTube. В этой статье я подробнее расскажу о том, чего мы ждём от сильного кандидата на такой секции и почему мы сформулировали именно такие критерии.


image

Как мы предсказываем будущее в поиске Яндекса: от исправления ошибок до discovery-запросов

Reading time6 min
Views9.4K
Люди не всегда точно формулируют свои запросы, поэтому поисковые системы должны помогать им в этом. Меня зовут Сергей Юдин, я руковожу группой аналитики функциональности поиска в Яндексе. Мы каждый день улучшаем что-то с помощью машинного обучения. Последний год мы разрабатываем технологию, которая предугадывает интересы человека.

Со специалистом из моей команды Анастасией Гайдашенко avgaydashenko я расскажу читателям Хабра, как работает эта технология, опишу архитектуру и применяемые алгоритмы. А ещё вы узнаете, чем предсказание следующего запроса отличается от предсказания будущих интересов человека.


Читать дальше →

Соревнование mlbootcamp от mail.ru. Кратко о рецепте второго места

Reading time9 min
Views11K
Добрый день, читатель! Данная статья расскажет о пути получения второго места на соревновании MLBootCamp III. Для тех, кто не в курсе — это соревнование по машинному обучению и анализу данных от Mail.Ru Group, проходило с 15 февраля по 15 марта.

В статье будет коротко про историю построения решения, немного советов про то, на чем набил шишек и благодарности.

Итак, поехали.
Читать дальше →

История 3-го места на ML Boot Camp III

Reading time5 min
Views13K
Недавно завершился контест по машинному обучению ML Boot Camp III от Mail.Ru.

Будучи новичком в machine learning мне удалось занять 3-е место. И в этой статье я постараюсь поделиться своим опытом участия.
Читать дальше →

Как правильно «фармить» Kaggle

Reading time27 min
Views163K

image
*фарм — (от англ. farming) — долгое и занудное повторение определенных игровых действий с определенной целью (получение опыта, добыча ресурсов и др.).


Введение


Недавно (1 октября) стартовала новая сессия прекрасного курса по DS/ML (очень рекомендую в качестве начального курса всем, кто хочет, как это теперь называется, "войти" в DS). И, как обычно, после окончания любого курса у выпускников возникает вопрос — а где теперь получить практический опыт, чтобы закрепить пока еще сырые теоретические знания. Если вы зададите этот вопрос на любом профильном форуме, то ответ, скорее всего, будет один — иди решай Kaggle. Kaggle — это да, но с чего начать и как наиболее эффективно использовать эту платформу для прокачки практических навыков? В данной статье автор постарается на своем опыте дать ответы на эти вопросы, а также описать расположение основных грабель на поле соревновательного DS, чтобы ускорить процесс прокачки и получать от этого фан.

проверить глубину этой кроличьей норы

Метрики в задачах машинного обучения

Reading time9 min
Views724K

Привет, Хабр!



В задачах машинного обучения для оценки качества моделей и сравнения различных алгоритмов используются метрики, а их выбор и анализ — непременная часть работы датасатаниста.


В этой статье мы рассмотрим некоторые критерии качества в задачах классификации, обсудим, что является важным при выборе метрики и что может пойти не так.


Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Registered
Activity