Miguel Grinberg
Эта статья является переводом нового издания учебника Мигеля Гринберга. Прежний перевод давно утратил свою актуальность.
Автор планирует завершить его выпуск в мае 2018. Я, со своей стороны, постараюсь не отставать с переводом.
User
Эта статья является переводом нового издания учебника Мигеля Гринберга. Прежний перевод давно утратил свою актуальность.
Автор планирует завершить его выпуск в мае 2018. Я, со своей стороны, постараюсь не отставать с переводом.
Sherlock by ThatsWhatSheSayd
Чтобы стать великим сыщиком, Шерлоку Холмсу было достаточно замечать то, чего не видели остальные, в вещах, которые находились у всех на виду. Мне кажется, что этим качеством должен обладать и каждый специалист по машинному обучению. Но тема Feature Engineering’а зачастую изучается в курсах по машинному обучению и анализу данных вскользь. В этом материале я хочу поделиться своим опытом обработки признаков с начинающими датасаентистами. Надеюсь, это поможет им быстрее достичь успеха в решении первых задач. Оговорюсь сразу, что в рамках этой части будут рассмотрены концептуальные методы обработки. Практическую часть по этому материалу совсем скоро опубликует моя коллега Osina_Anya.
Один из популярных источников данных для машинного обучения — логи. Практически в любой строчке лога есть время, а если это web-сервис, то там будут IP и UserAgent. Рассмотрим, какие признаки можно извлечь из этих данных.
Всем привет! Это уже двадцать первый выпуск дайджеста на Хабрахабр о новостях из мира Python.
Присылайте свои интересные события из мира Python.
С предыдущим digest можно ознакомиться здесь.
Новогодние праздники — прекрасный повод попрокрастинировать в уютной домашней обстановке и вспомнить дорогие сердцу мемы из 2k17, уходящие навсегда, как совесть Electronic Arts.
Однако даже обильно сдобренная салатами совесть иногда просыпалась и требовала хоть немного взять себя в руки и заняться полезной деятельностью. Поэтому мы совместили приятное с полезным и на примере любимых мемов посмотрели, как можно спарсить себе небольшую базу
данных, попутно обходя всевозможные блокировки, ловушки и ограничения, расставленные сервером на нашем пути. Всех заинтересованных любезно приглашаем под кат.
Как можно развлечься в новогодние праздники? Поиграть в компьютерные игры? Нет! Лучше написать бота, который это будет делать за тебя, а самому пойти лепить снеговика и пить глинтвейн.
Когда-то в школьные годы был увлечен одной из популярных MMORPG — Lineage 2. В игре можно объединяться в кланы, группы, заводить друзей и сражаться с соперниками, но в общем игра наполнена однообразными действиями: выполнением квестов и фармом (сбор ресурсов, получение опыта).
В итоге решил, что бот должен решать одну задачу: фарм. Для управления будут использоваться эмулированные клики мыши и нажатия клавиш клавиатуры, а для ориентирования в пространстве — компьютерное зрение, язык программирования — Python.
Недавно OpenDataScience и Mail.Ru Group провели открытый курс машинного обучения. В прошлом анонсе много сказано о курсе. В этой статье мы поделимся материалами курса, а также объявим новый запуск.
UPD: теперь курс — на английском языке под брендом mlcourse.ai со статьями на Medium, а материалами — на Kaggle (Dataset) и на GitHub.
Кому не терпится: новый запуск курса — 1 февраля, регистрация не нужна, но чтоб мы вас запомнили и отдельно пригласили, заполните форму. Курс состоит из серии статей на Хабре (Первичный анализ данных с Pandas — первая из них), дополняющих их лекций на YouTube-канале, воспроизводимых материалов (Jupyter notebooks в github-репозитории курса), домашних заданий, соревнований Kaggle Inclass, тьюториалов и индивидуальных проектов по анализу данных. Главные новости будут в группе ВКонтакте, а жизнь во время курса будет теплиться в Slack OpenDataScience (вступить) в канале #mlcourse_ai.
В октябре команда облачного сервиса Okdesk приняла участие в пензенском хакатоне, в рамках которого мы разработали "коробочного" Telegram-бота для Okdesk. Бот позволит клиентам сервисных компаний отправлять заявки на обслуживание, переписываться по заявками и ставить оценки выполнению заявок не выходя из любимого мессенджера.
Мы планировали написать об этом статью на Хабру, но вовремя остановились. Воистину, кому сегодня интересно читать о том, что на очередном хакатоне был разработан очередной Telegram-бот? Поэтому мы написали продолжение статьи о машинном обучении для классификации заявок в тех. поддержку. В этой статьей рассказываем о том, как после обучения алгоритма сделать работающий сервис, на вход которому передается текст клиентской заявки, а на выходе — категория, к которой относится заявка.
Главнокоммивояжер Аристарх стоял у окна и с лёгкой грустью во взгляде провожал стаю улетающих на юг комаров. Осень. Конец сезона. Пора дубинки, полюбившиеся жителям города Н в качестве средства самозащиты от кровососов и предмета статуса (известно, некусаный горожанин — милее надкушенного), забирать из оружейных лавок и завозить на их место рогатины от снежных троллей.
В рознице падение спроса на сезонные товары приводит к смене ассортимента на полках и возвратам невостребованных остатков на склады поставщиков. Кутерьма та еще. Не все могут похвастаться сбалансированным портфелем продуктов. Конец сезона может привести к кассовому разрыву и поставщики всячески стараются уменьшить потери. Незадача коммивояжера, как она есть.
Лето жаркое выдалось, потому сезон затянулся — мысль поселилась в голове Аристарха — годовой ритм миграции крылатых определенно укладывался в какие-то предопределённые природой рамки. А что если между продажами и погодой есть эта, как её, корреляция?
Покажи мне корреляцию погоды и продаж дубинок от комаров, вот тебе гигабайт сводных таблиц в экселе — так началось мое знакомство с возвратами сезонных продуктов.