Pull to refresh
71
0
Юрий Тараненко @Scorobey

Разработчик учебных программ

Send message

Математическая модель динамики финансового рынка

Reading time7 min
Views10K

Введение


Изменение курса валют на финансовом рынке влияет на цены товаров и услуг. Поэтому важно знать период времени через который цены начнут реагировать на смену курса валют.

Сложность решения указанной задачи состоит в большом количестве факторов влияющих на смену курса валют [1]. Эффективным способом отсеять ряд второстепенных факторов для определения основных тенденций рынка является применения «белого» фильтра Винера Хопфа [2,3].

Понятно, что только применение фильтра не решает всех проблем анализа влияния курса валют на финансовый рынок, однако, как один из инструментов анализа безусловно интересен. Кроме этого на примере такого фильтра можно определить коэффициенты дифференциального уравнения финансового рынка.

Постановка задачи


На основе данных о колебаниях курса валюты с использованием корреляционного анализа и системы уравнений Винера Хопфа построить динамическую модель финансового рынка при помощи которой определить временные интервалы реагирования цен на смену курса валют.
Читать дальше →
Total votes 17: ↑12 and ↓5+7
Comments9

Математическая модель вибрационного уровнемера с резонатором в виде консольной эллиптической трубки

Reading time11 min
Views4.1K

Введение


В публикации [1] подробно рассмотрена реализация на Python метода измерения отношения частот с использованием фигур Лиссажу. В качестве примера были проанализированы формы колебаний консольной эллиптической трубки вибрационного уровнемера [2].



Упруго закреплённая трубка эллиптического сечения с помощью систем возбуждения 5,6,7 совершает автоколебания в одной плоскости, а с помощью систем 8, 9, 10 в другой плоскости перпендикулярной первой. Трубка колеблется в двух взаимно перпендикулярных плоскостях с разными частотами близкими к собственным. Масса трубки зависит от уровня заполняющей её жидкости.

С изменением массы меняются и частоты колебаний трубки, которые и являются выходными сигналами уровнемера. Частоты несут дополнительную информацию о мультипликативных и аддитивных дополнительных погрешностях, компенсируемых при обработке частот микропроцессором 11.

Остался не решённым вопрос определения зависимости частот колебаний трубки от уровня заполняющей жидкости что и является предметом данной публикации.

Постановка задачи


Определить частоты изгибных колебаний трубки в двух взаимно перпендикулярных плоскостях методом Релея с использованием точного уравнения изгибной линии трубки из публикации [1].

С использованием полученных соотношений для частот найти зависимости чувствительности от уровня и определить диапазоны пригодные для контроля уровня жидкости.

Для реализации указанных задач средствами Python рассмотреть два метода решения символьный и символьно-численный. Сравнить указанные методы по производительности
Читать дальше →
Total votes 10: ↑7 and ↓3+4
Comments8

Определение устойчивости систем автоматического управления промышленными роботами

Reading time5 min
Views54K

Введение


Необходимым условием работоспособности системы автоматического управления (САУ), является её устойчивость. Под устойчивостью принято понимать свойство системы восстанавливать состояние равновесия, из которого она была выведена под влиянием возмущающих факторов после прекращения их воздействия [1].

Постановка задачи


Получение простого, наглядного и общедоступного инструмента для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.
Читать дальше →
Total votes 11: ↑10 and ↓1+9
Comments7

Символьное решение задач нелинейного программирования

Reading time5 min
Views13K

Введение


С появлением библиотеки SymPy для решения математических задач появились дополнительные возможности, позволяющие отображать результаты в символьной форме.

Подробное описание использования символьных вычислений приведено в публикации [1] под названием «Введение в научный Python» в разделе «Символьные вычисления».

Расширение области применения символьных вычислений на решение отдельных задач нелинейного программирования надеюсь будет способствовать популяризации Python в том числе и как альтернатива дорогостоящих математических пакетов.

Постановка задачи


Привести примеры символьных вычислений для безусловного экстремума дифференцируемой нелинейной функции цели с определением достаточных условий существования экстремума по матрице Гессе. Рассмотреть так же задачу условного нелинейного программирования с линейными ограничениями при помощи множетелей Лагранжа.

Для того, чтобы определиться с терминологией приведу следующее определение [2]. Задачей нелинейного программирования (задачей НП) называется задача нахождения максимума (минимума) нелинейной функции многих переменных, когда на переменные имеются (не имеются) ограничения типа равенств или неравенств.

Символьное вычисление безусловного экстремума дифференцируемой функции трёх переменных


Несмотря на сложность решаемых задач при символьном решении всё становится простым и наглядным. Рассмотрим листинг первого примера.
Читать дальше →
Total votes 12: ↑10 and ↓2+8
Comments3

Расширение аналитических возможностей метода линейного программирования средствами Python

Reading time6 min
Views7.1K

Введение


По линейному программированию средствами Python мною в статье [1] было рассмотрено решение задачи оптимизации с функцией цели альтернативной к основной. Как было показано в статье приём с введением новых функций цели при рассмотрении одной общей задачи оптимизации значительно расширяет аналитические возможности метода. Поэтому логично выбрать и рассмотреть такой пример, в котором при решении общей задачи оптимизации можно сформулировать несколько альтернативных функций цели.

Постановка задачи


На примере задачи об оптимальной диете рассмотреть формирование различных альтернативных функций цели с необходимыми начальными условиями. Кроме этого разработать простой и единообразный интерфейс решения подобных задач с выводом результатов понятных конечному пользователю.

Формирование целевой функции и начальных условий для минимизации стоимости диеты


Для поддержания нормальной жизнедеятельности человеку необходимо потреблять в день не менее 118 г белков, 56 г жиров, 500 г углеводов и 28 г минеральных солей. Эти питательные вещества содержатся в разных количествах и разных пищевых продуктах.

В таблице приведено количество питательных веществ в различных продуктах в г/кг и условная цена этих продуктов за 1 кг. Необходимо составить дневной рацион, содержащий минимальную суточную норму питательных веществ при минимальной их стоимости.


Читать дальше →
Total votes 10: ↑9 and ↓1+8
Comments0

Математическая модель жидкостного тахометра на Python

Reading time5 min
Views9.4K

Введение


В технике явление формирования поверхности вращающейся жидкости в форме близкой к поверхности параболоида вращения используется в основном в сепарирующих центрифугах для разделения суспензий на фракции [1].

Меня заинтересовал так называемый жидкостной тахометр. Принцип работы прибора состоит в контроле за уровнем верхней кромки жидкости во вращающемся цилиндрическом стакане.
Уровень жидкости зависит от скорости вращения стакана и может контролироваться простой оптической следящей системой.

Рассмотрение математической модели такого прибора имеет не только познавательный, но и практический интерес с учётом её реализации средствами свободно распространяемого языка общего назначения Python.

Теория – просто и кратко


Вектора сил, действующих на частицу жидкости во вращающемся цилиндрическом стакане приведены на следующем рисунке.



Рассмотрим сечение поверхности вращения координатной плоскостью ZX и найдём касательную в точке P (x, z) этого сечения. На частицу Q находящуюся в точке P действует сила тяжести mg изображённая в виде вектора PL.

Давление жидкости изображено в виде вектора PN направленного нормально к поверхности жидкости. Силы PM и PM’ для установившегося движения равны. Частица жидкости движется по окружности радиуса x её ускорение PM направлено к центру вращения и равно m*w**2 *x.
Читать дальше →
Total votes 13: ↑9 and ↓4+5
Comments5

Веб-сервер — ваша первая сетевая программа Arduino

Reading time14 min
Views81K

Введение


В моих публикациях [1,2,3] подробно описана цепочка датчик – Arduino-интерфейс Python. В реальных условиях промышленного производства датчики находиться на значительном удалении не только друг от друга но и от места где осуществляется централизованная обработка измерительной информации. Логично передавать информацию от датчиков по компьютерной локальной сети используя хорошо разработанные сетевые технологии. Данная публикация написана в стили упражнения по сборке и настройке сетевого приложения с Arduino в домашних условиях.

Постановка задачи


  1. Использовать библиотеку Arduino Ethernet с расширением Arduino Ethernet Shield для создания веб-сервера.
  2. Создать удаленный доступ к Arduino с использованием сети вашего домашнего компьютера.
  3. Использовать стандартный пример Arduino для обеспечения значений влажности и датчика движения с помощью веб-сервера.
  4. Разработать веб-приложений с использованием Python.

Этапы решения поставленной задачи


  1. Проектирование и создание аппаратных средств для использования Arduino и Ethernet Shield.
  2. Запуск примера по умолчанию из среды разработки Arduino как начальную точку создания сервера.
  3. Изменение примера для размещения вашего оборудования и повторного развертывания кода.
  4. Разработка веб-приложений с использованием Python.
Читать дальше →
Total votes 8: ↑7 and ↓1+6
Comments3

О классификации методов преобразования Фурье на примерах их программной реализации средствами Python

Reading time7 min
Views29K

Введение


Публикации по методу Фурье условно можно разделить на две группы. Первая группа так называемых познавательных публикаций, например, [1,2].

Вторая группа публикаций касается применения преобразований Фурье в технике, например, при спектральном анализе [3,4].

Ни в коем случае не умоляя достоинства этих групп публикации стоит признать, что без классификации, или хотя бы попытки осуществить такую классификацию, получить системное представление о методе Фурье, по моему мнению, затруднительно.

Задачи публикации


Провести классификацию методов преобразования Фурье на примерах их программной реализации средствами Python. При этом для облегчения чтения использовать формулы только в программном коде с соответствующими пояснениями.

Гармонический анализ и синтез


Гармоническим анализом называют разложение функции f(t), заданной на отрезке [0, Т] в ряд Фурье или в вычислении коэффициентов Фурье по формулам.

Гармоническим синтезом называют получение колебаний сложной формы путем суммирования их гармонических составляющих (гармоник).

Программная реализация
#!/usr/bin/python
# -*- coding: utf-8 -*
from scipy.integrate import quad # модуль для интегрирования
import matplotlib.pyplot as plt # модуль для графиков
import numpy as np # модуль для операций со списками и массивами
T=np.pi; w=2*np.pi/T# период и круговая частота
def func(t):# анализируемая функция
         if t<np.pi:
                  p=np.cos(t)
         else:
                  p=-np.cos(t)
         return p
def func_1(t,k,w):# функция для расчёта коэффициента a[k] 
         if t<np.pi:
                  z=np.cos(t)*np.cos(w*k*t)
         else:
                  z=-np.cos(t)*np.cos(w*k*t)
         return z
def func_2(t,k,w):#функция для расчёта коэффициента b[k] 
         if t<np.pi:
                  y=np.cos(t)*np.sin(w*k*t)
         else:
                  y=-np.cos(t)*np.sin(w*k*t)
         return y
a=[];b=[];c=4;g=[];m=np.arange(0,c,1);q=np.arange(0,2*np.pi,0.01)# подготовка списков для численного анализа
a=[round(2*quad(func_1, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для a[k], k -номер гармоники 
b=[round(2*quad(func_2, 0, T, args=(k,w))[0]/T,3) for k in m]# интеграл для b[k], k -номер гармоники
F1=[a[1]*np.cos(w*1*t)+b[1]*np.sin(w*1*t) for t in q]#функции для гармоник
F2=[a[2]*np.cos(w*2*t)+b[2]*np.sin(w*2*t) for t in q]
F3=[a[3]*np.cos(w*3*t)+b[3]*np.sin(w*3*t) for t in q]
plt.figure()
plt.title("Классический гармонический анализ функции \n при t<pi  f(t)=cos(t)  при t>=pi  f(t)=-cos(t)")
plt.plot(q, F1, label='1 гармоника')
plt.plot(q, F2 , label='2 гармоника')
plt.plot(q, F3, label='3 гармоника')
plt.xlabel("Время t")
plt.ylabel("Амплитуда А")
plt.legend(loc='best')
plt.grid(True)
F=np.array(a[0]/2)+np.array([0*t for t in q-1])# подготовка массива для анализа с a[0]/2
for k in np.arange(1,c,1):
         F=F+np.array([a[k]*np.cos(w*k*t)+b[k]*np.sin(w*k*t) for t in q])# вычисление членов ряда Фурье
plt.figure()
P=[func(t) for t in q]
plt.title("Классический гармонический синтез")
plt.plot(q, P, label='f(t)')
plt.plot(q, F, label='F(t)')
plt.xlabel("Время t")
plt.ylabel("f(t),F(t)")
plt.legend(loc='best')
plt.grid(True)
plt.show()

Читать дальше →
Total votes 14: ↑10 and ↓4+6
Comments1

Прототипирование в среде Python-Arduino

Reading time5 min
Views24K
Привет, Хабр! Хочу на примерах рассказать о самом простом способе создания чего то сложного. Суть страшного слова «прототипирование» сводится к использованию аналогий или шаблонов в проекте Arduino.

Не хочу пугать длинными словами начинающих пользователей Python-Arduino, по-этому идем сразу по примерам.

Зуммер — генерирует звуковой сигнал тревоги


Зумер [1]. выдает звук, когда снабжен цифровым значением HIGH (то есть, +5 В), которое может быть обеспечено с помощью цифровых выводов Arduino [2].

Однако, вместо того, чтобы выполнять простой цифровой вывод, как было выполнено с датчиком движения реализуем трюки программирования Python для генерации различных звуковых паттернов и создания различных звуковых эффектов.

Соединения




Читать дальше →
Total votes 10: ↑9 and ↓1+8
Comments2

Методы разработки потока программного обеспечения датчиков движения, работающих с Arduino

Reading time9 min
Views12K
Привет, Хабр! Хочу предложить реализацию двух подходов разработки программного обеспечения датчика движения, работающего совместно с платой Arduino. Ни датчик движения [1], ни Arduino [2]. в дополнительной рекламе не нуждаются.

Сравним существующие методы программирования с точки зрения простоты и удобства использования. Предлагаем начать статью со знакомства с характеристиками выбранного датчика движения.

Основным датчиком который будем использовать является датчик движения PIR [3].

PIR датчики небольшие, недорогие, потребляют меньше энергии и совместимы с аппаратными платформами, такими как Arduino.

Он использует пару пироэлектрических датчиков, которые обнаруживают инфракрасное излучение. Он имеет радиус действия до 6 метров, что достаточно для проекта.


Кроме того понадобятся светодиоды: зеленый и красный. Шнуры, резисторы и макет: для завершения соединений понадобится пучок проводов и макет. Также понадобятся два резистора на 220 Ом и один 10 кОм.

Следующим составляющим будет плата Arduino: плата Arduino Uno. Для связи платы Arduino с компьютером используем кабель USB.
Читать дальше →
Total votes 11: ↑8 and ↓3+5
Comments2

Использование Python для обработки в реальном масштабе времени информации от датчиков, работающих с Arduino

Reading time8 min
Views27K

Постановка задачи


Цифровые и аналоговые датчики, подключенные к Arduino, генерируют большие объёмы информации, которая требует обработки в реальном масштабе времени [1].

В настоящее время данные от Arduino распечатывают из командной строки или отображают в графическом интерфейсе с запаздыванием. Поэтому данные в режиме реального времени и не сохраняются, что делает невозможным их дальнейший анализ.

Данная публикация посвящена программному решению задачи хранения информации от датчиков, работающих с Arduino и её графическому представлению в реальном масштабе времени. В примерах используются широко известными датчиками, такими как потенциометр и датчик движения PIR.

Использование CSV-файлов для хранения данных полученных от датчиков, работающих с Arduino


  • Для записи данных в CSVфайл можно использовать простой листинг:

    import csv
    data = [[1, 2, 3], ['a', 'b', 'c'], ['Python', 'Arduino', 'Programming']]
    with open('example.csv', 'w') as f:
      	w = csv.writer (f)
     	 for row in data:
    		w.writerow(row)
    
Читать дальше →
Total votes 15: ↑12 and ↓3+9
Comments2

Простые модели экономической динамики на Python

Reading time5 min
Views8.7K

Введение


В моих публикациях [1,2] экономические задачи рассматривались в статике без учёта времени. В задачах оптимизации экономической динамики анализируются изменение экономических параметров и их взаимосвязей во времени. В моделях экономической динамики время может рассматриваться как дискретное изменяющееся скачком, например, за год. Для описания таких процессов используются разностные уравнения. При непрерывном изменении во времени для описания параметров модели используются дифференциальные уравнения.

Постановка задачи


Для первого знакомства с моделями экономической динамика достаточно рассмотреть две типовые модели. Это паутинообразная модель и модель и модель Калдора в которых и реализованы два указанных подхода к описанию экономической динамики.
Читать дальше →
Total votes 10: ↑5 and ↓50
Comments0

Решение прямой и двойственной задачи линейного программирования средствами Python

Reading time5 min
Views17K

Введение


Следует отметить, что методы решения задач линейного программирования относятся не к экономике, а к математике и вычислительной технике. При этом экономисту нужно обеспечить максимально комфортные условия диалога с соответствующим программным обеспечением. В свою очередь такие условия могут обеспечивать только динамично развивающиеся и интерактивные среды разработки, имеющие в своём арсенале набор необходимых для решения таких задач библиотек. Одной из каких сред разработки программного обеспечения безусловно является Python.

Постановка задачи


В публикациях [1,2] рассматривались решения прямых задач оптимизации методом линейного программирования и был предложен обоснованный выбор решателя scipy. optimize.

Однако известно [3], что каждой задаче линейного программирования соответствует так называемая выделенная(двойственная)задача. В ней по сравнению с прямой задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума — максимум). Задача, двойственная к двойственной — эта сама исходная задача.

Решение двойственной задачи очень важно для анализа использования ресурсов. В данной публикации будет доказано, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной).

Оптимальные значения стоимости материала и труда будут оцениваться по их вкладу в целевую функцию. В результате будут получены «объективно обусловленные оценки» сырья и рабочей силы, которые не совпадают с рыночными ценами.
Читать дальше →
Total votes 26: ↑20 and ↓6+14
Comments3

Игровая модель поведения на рынке двух конкурирующих фирм на Python

Reading time4 min
Views8.1K

Введение


Математическое моделирование в экономике позволяет предупредить возникновения ряда проблем, возникающих в реальной предпринимательской деятельности. Одной из таких проблем у производителей товаров является банкротство.

Поэтому знакомство со стратегиями, позволяющими избежать банкротство в условиях конкуренции, хотя бы на самом начальном уровне безусловно полезно. Кроме того, популярность Python растёт, и реализация задач экономической оптимизации на этом языке так же поспособствует их популярности.

Постановка задачи


Рассмотрим модель поведения на рынке двух конкурирующих фирм, выпускающих аналогичный товар в объемах х и у, пользующийся неограниченным спросом [1]. Построим следующие две функции для цены и издержек.

Листинг построения графиков функций цены и издержек
# -*- coding: utf8 -*-    
import numpy as np
import matplotlib.pyplot as plt
a=10
def f(q): Функция цены от объёма товара
         return a*np.e**(-0.5*q**2)
def h(q): #Функция издержек от объёма товара
         return np.sqrt(q)
plt.figure()
q= np.arange(0, 2.01, 0.1)#Массив значений аргумента
plt.title(r'$y=f(q)$') #Заголовок в формате TeX
plt.ylabel(r'$f(q)$') #Метка по оси y в формате TeX
plt.xlabel(r'$q$') #Метка по оси x в формате TeX
plt.grid(True) #Сетка
plt.plot(q,f(q)) #Построение графика
plt.figure()
plt.title(r'$y=h(q)$') #Заголовок в формате TeX
plt.ylabel(r'$h(q)$') #Метка по оси y в формате TeX
plt.xlabel(r'$q$') #Метка по оси x в формате TeX
plt.grid(True) #Сетка
plt.plot(q,h(q)) #Построение графика
plt.show() #Показать график
Читать дальше →
Total votes 14: ↑11 and ↓3+8
Comments1

Визуализация результатов латентно-семантического анализа средствами Python

Reading time7 min
Views9.3K

Постановка задачи


Семантический (смысловой) анализ текста – одна из ключевых проблем как теории создания систем искусственного интеллекта, относящаяся к обработке естественного языка (Natural Language Processing, NLP), так и компьютерной лингвистики. Результаты семантического анализа могут применяться для решения задач в таких областях как, например, психиатрия (для диагностирования больных), политология (предсказание результатов выборов), торговля (анализ востребованности тех или иных товаров на основе комментариев к данному товару), филология (анализ авторских текстов), поисковые системы, системы автоматического перевода. Поисковая машина Google полностью построена на семантическом анализе.

Визуализация результатов семантического анализа является важным этапом его проведения поскольку может обеспечить быстрое и эффективное принятие решений по результатам анализа.

Анализ публикаций в сети по латентно семантическому анализу (LSA) показывает, что визуализация результатов анализа приведена только в двух публикациях [1,2] в виде двух координатного графика семантического пространства с нанесенными координатами слов и документов. Такая визуализация не позволяет однозначно определить группы близких документов и оценить уровень их смысловой связи по принадлежащим документам словам. Хотя в моей публикации под названием “Полный латентно семантический анализ средствами Python” [1] предпринималась попытка использования кластерного анализа результатов латентно семантического анализа, однако были определены только метки кластеров и координаты центроидов для групп слов и документов без визуализации.
Читать дальше →
Total votes 13: ↑11 and ↓2+9
Comments0

Решение закрытой транспортной задачи с дополнительными условиями средствами Python

Reading time10 min
Views25K

Постановка задачи


Необходимость решения транспортных задач в связи с территориальной разобщённостью поставщиков и потребителей очевидна. Однако, когда необходимо решить транспортную задачу без дополнительных условий это как правило не является проблемой поскольку такие решения достаточно хорошо обеспечены как теоретически, так и программными средствами.

Решение закрытой транспортной задачи средствами Python с классическим условиями для поставщиков и потребителей товара приведено в моей статье “Решение задач линейного программирования с использованием Python” [1].

Реальная транспортная задача усложняется дополнительными условиями и вот некоторые из них. Ограниченная грузоподъёмность транспорта, не учитываемые задержки при оформлении груза на таможне, приоритеты и паритеты для поставщиков и потребителей. Поэтому решение закрытой транспортной задачи с учётом дополнительных условий и стало целью данной публикации.
Читать дальше →
Total votes 17: ↑13 and ↓4+9
Comments2

Тематическое моделирование средствами BigARTM

Reading time11 min
Views20K

Введение


Обратил внимание на перевод публикации под названием «Тематическое моделирование репозиториев на GitHub» [1]. В публикации много теоретических данных и очень хорошо описаны темы, понятия, использование естественных языков и многие другие приложения модели BigARTM.

Однако, обычному пользователю без знаний в области тематического моделирования для практического использования достаточно знаний интерфейса и чёткой последовательности действий при подготовке текстовых исходных данных.Разработке прогамного обеспечения для подготовки текстовых данных и выбору среды разработки и посвящена данная публикация.
Читать дальше →
Total votes 9: ↑8 and ↓1+7
Comments2

Вероятностный и информационный анализ результатов измерений на Python

Reading time5 min
Views8.5K

Нет более полезного инструмента для исследования, чем подтверждённая практикой теория.

Зачем нужна информационная теория измерений


В предыдущей публикации [1] мы рассмотрели подбор закона распределения случайной величины по данным статистической выборки и только упомянули об информационном подходе к анализу погрешности измерений. Поэтому продолжим обсуждение этой актуальной темы.

Преимущество информационного подхода к анализу результатов измерений состоит в том, что размер энтропийного интервала неопределенности можно найти для любого закона распределения случайной погрешности. Это исключает «недоразумения» при произвольном выборе значений доверительной вероятности.

Кроме того, по совокупности вероятностных и информационных характеристикам выборки можно более точно определить характер распределения случайной погрешности. Это объясняется обширной базой численных значений таких параметров, как энтропийный коэффициент иконтрэксцесс для различных законов распределения и их суперпозиций.
Читать дальше →
Total votes 12: ↑9 and ↓3+6
Comments1

Подбор закона распределения случайной величины по данным статистической выборки средствами Python

Reading time6 min
Views47K

О чём могут «рассказать» законы распределения случайных величин, если научиться их «слушать»


Законы распределения случайных величин наиболее «красноречивы» при статистической обработке результатов измерений. Адекватная оценка результатов измерений возможна лишь в том случае, когда известны правила, определяющие поведение погрешностей измерения. Основу этих правил и составляют законы распределения погрешностей, которые могут быть представлены представлены в дифференциальной (pdf) или интегральной (cdf) формах.

К основным характеристикам законов распределения относятся: наиболее вероятное значение измеряемой величины под названием математическое ожидание (mean); мера рассеивания случайной величины вокруг математического ожидания под названием среднеквадратическое отклонение (std).

Дополнительными характеристиками являются – мера скученности дифференциальной формы закона распределения относительно оси симметрии под названием асимметрия (skew) и мера крутости, огибающей дифференциальной формы под названием эксцесс (kurt). Читатель уже догадался, что приведенные сокращения взяты из библиотек scipy. stats, numpy, которые мы и будем использовать.
Читать дальше →
Total votes 18: ↑14 and ↓4+10
Comments3

Моделирование переходных процессов при коммутации электрической цепи средствами Python

Reading time3 min
Views13K


Зачем нужно учитывать переходные процессы


В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, если они подключенными к цепи. При этом могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые способны нарушить работу систем автоматики и других устройств, вплоть до выхода их из строя.

С другой стороны, переходные процессы находят практическое применение, например, в различные рода электронных генераторах, в схемах электроники и автоматики.

В сети много публикаций по данной теме [1,2,3], однако большая их часть содержит описания переходных процессов, основанное на методах аналитического решения соответствующих уравнений. Численные методы используются значительно реже, причём большая часть таких публикаций посвящена описанию метода численного решения дифференциального уравнения.

Учитывая хорошо развитые в библиотеке SciPy численные методы, привожу пример математического моделирования переходных процессов при коммутации в электрических цепях средствами данной библиотеки.
Читать дальше →
Total votes 11: ↑8 and ↓3+5
Comments0

Information

Rating
Does not participate
Location
Днепр, Днепропетровская обл., Украина
Date of birth
Registered
Activity