Pull to refresh
20
0
Send message

Спасибо за замечание)) Я не задумывался об этом, а сейчас посмотрел, как заверстаны формулы и увидел, что в атрибуте alt действительно есть упоминание СЛМАССИВ

Спасибо за комментарий! Google справился с поиском))

там период порядка E+9

Алексей, спасибо за комментарий))
Я когда писал статью, озаботился тем, какой алгоритм генерации случайных чисел (ГСЧ) использует Excel. Это алгоритм Mersenne Twister. Его период порядка Е+6000. Так что в Excel описанная вами проблема не возникла бы. Правда, Excel не справился бы с генераций миллиардов случайных чисел. Подробнее об эксельном ГСЧ https://chatgpt.com/share/67ab2aae-1f68-800f-b57d-1bf6578312e7

Картинка ближе к началу текста задвоена.

Алексей, спасибо за великолепный комментарий!

Но где же я могу найти авторитетный источник, в котором бы обсуждался совершенно тривиальный и очевидный для математиков факт, что случайный процесс и случайная величина - это разные вещи?!

Рекомендую книги и научные статьи Нассима Талеба. В частности, Статистические последствия жирных хвостов.

С одной стороны, вы правы. Если распределение не будет нормальным, формулы расчета стандартного отклонения и стандартной ошибки не изменятся. С другой стороны, статистические инструменты и статистический вывод могут потерять адекватность, к которой мы привыкли, работая с данными, распределенными нормально.

Если я правильно понял, вопрос относится к рис. 8. Для распределения Коши матожидание не существует. Но по набору выборок среднее значение чему-то будет равно.

Интересное замечание. Спасибо. Я ранее не использовал робастные методы. Почитал подробнее про оценочную функцию Тейла-Сена, и выполнил расчеты для данных на рис. 18. Поскольку выбросов нет, можно было ожидать, что наклоны по методу Тейла-Сена и наименьших квадратов (МНК) будут близки. Действительно метод Тейла-Сена дал чуть большее m = 0,8947. На 3,5% больше чем МНК.

Вы использовали данные в приложенном Excel-файле?
Я проверил наклон регрессионной кривой расчетом в лоб по формуле:








Подтвердил значение m = 0,8646.
Проверьте ваши расчеты.

Спасибо за ссылки. Ранее не сталкивался со стандартом IBCS. Обязательно почитаю. Думаю, что и указанные вами статьи, и моя статья полезны для аудитории.

Эта книга несколько раз упоминается в статье))

>Если честно, когда открывал заголовок - думал статья будет для разработчиков - как рисовать красивые диаграммы доступными им средствами и не на EXCEL.
Странно. Я специально в заголовке указал Excel, чтобы не возникали ложные ожидания.

Information

Rating
Does not participate
Works in
Registered
Activity