Зачастую разработчику, или даже пользователю, требуется посмотреть, что происходит внутри устройства. Обычно в таких ситуациях используют либо текстовой вывод в терминал (через голый UART или самописный протокол гарантированной доставки), либо пишут свои собственные системы логирования. Однако, всегда ли оправдан такой подход? Есть ли решение проще и производительнее? В данной статье мы рассмотрим одно из таких - библиотеку логирования uP7.
Инженер-программист
Very simple real time operating system: что это и зачем нужно?
В своей предыдущей статье я вскользь упомянул, что использую в проекте операционную систему реального времени собственной разработки vsrtos, которая по внешнему API похожа на FreeRTOS. Так зачем же нужно было ее разрабатывать, и когда стоит сделать выбор в ее пользу вместо FreeRTOS?
В этой статье будут разобраны плюсы и минусы использования vsrtos и FreeRTOS для определенного ряда задач, ради которых vsrtos и была разработана.
Трезвый взгляд на W7500P — микроконтроллер со встроенным TCP/IP стеком
Многие из тех, кто имел дело с микроконтроллерами, наверняка слышали о микросхеме конвертере SPI <-> Ethernet W5500. В свое время эта микросхема стала поистине "народной" по многим причинам, к которым можно отнести как низкую стоимость самих микросхем и готовых модулей для прототипирования на их основе, так и наличие готовых библиотек под разные платформы для легкой интеграции чипа в различные проекты. К тому же, из-за относительно легкой модели взаимодействия между микросхемой и микроконтроллером, не составляло труда взаимодействовать с микросхемой без сторонних библиотек.
Однако времена шли и появлялось все больше дешевых микроконтроллеров, которые содержали внутри себя MAC уровень, требуя лишь снаружи микросхему PHY. А для ленивых производитель давал готовые решения по интеграции в проект LWIP со стороны софта и демо платы и примеры разводки PHY под свой микроконтроллер со стороны железа. Изредко появлялись чипы с PHY прямо на кристалле микроконтроллера.
И именно в этот момент WIZnet сделал следующий шаг - выпустил чип, который должен был сочетать функциональность W5500 с функциональностью обычного микроконтроллера, объединив тем самым в себе 2 микросхемы: микроконтроллер и W5500. Это техническое решение получило название W7500P.
Рассмотрим, что же из себя представляет W7500P.
Краткие заметки embed-программиста: дублирование секции в памяти микроконтроллера
Начальные условия
Есть устройство на базе микроконтроллера (для примера будет взят stm32f405rgt6). При включении оно настраивает свою периферию на основе предпочтений пользователя или настроек по-умолчанию. Пользователь может менять настройки во время работы устройства (как правило, только во время интеграции в комплекс) через один из возможных интерфейсов (CLI меню или утилита установки параметров работы, работающая через бинарный протокол). После установки параметров пользователь сохраняет настройки специальной командой (так же через один из возможных интерфейсов).
О злоупотреблении использования операционной системы в проектах под микроконтроллеры
Пять лет использования C++ под проекты для микроконтроллеров в продакшене
Встраиваем Lua интерпретатор в проект для микроконтроллера (stm32)
В достаточно крупных приложениях немалую часть проекта составляет бизнес-логика. Эту часть программы удобно отлаживать на компьютере, после чего встраивать в состав проекта для микроконтроллера, ожидая, что эта часть будет выполняться в точности так, как было задумано без какой-либо отладки (идеальный случай).
Так как большинство программ для микроконтроллеров пишется на С/C++, то для этих целей обычно используют абстрактные классы, предоставляющие интерфейсы к низкоуровневым сущностям (в случае, если проект пишется только с использованием C, то зачастую используются структуры указателей на функции). Данный подход предоставляет требуемый уровень абстракции над железом, однако чреват надобностью в постоянной повторной компиляции проекта с последующим программированием энергонезависимой памяти микроконтроллера бинарным файлом прошивки большого объема.
Однако есть и другой путь — использование скриптового языка, позволяющего производить отладку бизнес-логики в реальном времени на самом устройстве или загружать сценарии работы прямо с внешней памяти, не включая данного кода в состав прошивки микроконтроллера.
В качестве скриптового языка я выбрал Lua.
Самые частые грабли при использовании printf в программах под микроконтроллеры
В данной статье я собрал свой собственный топ нюансов, которые возникают при использовании printf в программах под микроконтроллеры, сортированный по очевидности от самых очевидных к полностью неочевидным.
Делаем процесс разработки тяжеловесного программного обеспечения под микроконтроллеры более удобным (нет)
Цель статьи — рассказать о методе построения проекта на C и/или C++, при котором, в случае изменения участка кода, отладка которого производится чаще всего, большая часть проекта не нуждалась в повторной перезаписи. А так же показать, почему данный метод не всегда является эффективным решением.
Легковесное ядро конечного автомата с автогенератором дерева для embedded проектов
Введение
В моей практике часто возникали ситуации, когда применение конечного автомата являлось наиболее верным решением, однако от него приходилось отказываться ввиду срочности разработки, сложности поддержки, или же по каким-либо иным причинам. В этом посте мне хотелось бы поделиться с вами разработанным мною решением, позволяющим без труда встраивать в свои проекты конечные автоматы с возможностью наглядного отображения структуры дерева.
Используем template + constexpr для создания масок регистров периферии микроконтроллера на этапе компиляции (C++14)
Введение
Эта небольшая заметка содержит не очевидное решение поставленной ниже задачи, до которого мне пришлось доходить несколько бессонных ночей.
Задача: на основе заданных пользователем данных о том, как должен работать периферийный блок микроконтроллера, получить на этапе компиляции массив масок конфигурации его регистров, которые можно было бы использовать в реальном времени. При этом требуется на этапе компиляции проверить, что все параметры заданные верно (периферия микроконтроллера будет сконфигурирована верна).
Заинтересовавшихся в том, как это можно сделать, прошу под кат.
Настраиваем бесплатную сборку для написания и отладки программ под микроконтроллеры на основе ядра ARM под Windows 10
Параллельно с этим мне пришлось подробно объяснять, какой элемент сборки для чего нужен, а так же, как эти элементы взаимодействуют между собой, поскольку друг до этого никогда ранее с микроконтроллерами не сталкивался (от слова «видел Arduino в магазине»).
Данный материал призван помочь начинающим быстро и без проблем настроить полностью бесплатную инфраструктуру для работы с микроконтроллерами, а так же понять, каким образом происходит сборка итогового бинарного файла. Производитель и модель микроконтроллера на этапе настройки этой инфраструктуры неважны. Главное, чтобы в его основе лежало ядро ARM.
Пишем программное обеспечение для генерации данных музыкальной открытки. Часть первая: разбираем MIDI файл
Введение
В своих статьях о переходе на российский микроконтроллер К1986ВЕ92QI я ни раз рассказывал о генерации звука средствами микроконтроллера. Тогда передо мной стояла задача лишь воспроизвести данные. Для создания этих самих данных, получаемых из MIDI файлов, использовались весьма экзотические методы, например, как в этой статье. Да, подобные методы имеют право на жизнь, если требуется получить данные для воспроизведения пару раз в жизни. Но так как я достаточно часто сталкиваюсь с задачами, когда на контроллере нужно получить достаточно сложный звук, или же звук — лишь дополнительная опция, то задача преобразовывать MIDI файлы такими экзотическими способами, становится весьма нетривиальной. В этой небольшой серии статей я поставил для себя задачу создать (а за одно и подробно рассказать о процессе создания) универсальную программу для преобразования MIDI файлов в приемлемый для микроконтроллера формат, а так же генерирующую все необходимые для микроконтроллера данные инициализации.
Итогом данной статьи станет реализация основного функционала программы: создание массивов нота-длительность, созданного из MIDI файла. Кто заинтересовался — прошу под кат.
Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Практическое применение: управляем яркостью светодиода
Вступление
В двух предыдущих статьях мы генерировали при помощи ШИМ тактовый сигнал нужной нам частоты, получая на светодиоде равный промежутки свечения и его отсутствия. Данная задача имеет место быть на практике (в одной из последующих статей мы с ней точно столкнемся). Но чаще всего ШИМ используют по другому назначению. Одно из самых распространенных — управление яркостью светодиодов или скоростью вращения моторов. Так же при помощи ШИМ можно генерировать звук (о чем будет следующая статья). А в данной статье мне хотелось бы рассказать, как на нашем контроллере можно реализовать управление яркостью светодиода.
Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Опрашиваем клавиши, генерируем ШИМ. Часть вторая
Вступление.
В предыдущей статье мы с вами повторили общую структуру таймера и детально рассмотрели ручной способ настройки ШИМ канала с использованием CMSIS. Но многим не нравится «копаться в регистрах» и они предпочитают принципиально другой уровень абстракции, позволяющий, как им кажется, упростить задачу. В этой статье я попытаюсь показать вам все плюсы и минусы данного подхода.Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Опрашиваем клавиши, генерируем ШИМ. Часть первая
Вступление
Отступление
С последней написанной мною статьи прошло уже довольно много времени, за что прошу прощения: ЕГЭ, поступление, начало учебы. Теперь же, когда до сессии еще далеко, а учебный процесс уже отнимает не так много времени, я могу продолжить писать статьи об освоении нашего К1986ВЕ92QI.
План работы
В комментариях к предыдущим статьям меня просили осветить не только работу с микроконтроллером через настройку регистров, но и с использованием SPL (Универсальной библиотеки для авто настройки периферии.). Когда мы только начинали, я не стал этого делать, ибо соблазн использовать SPL вместо ручной настройки по средствам CMSIS был бы велик, и вы бы, очень вероятно, вопреки здравому смыслу, начали бы использовать SPL везде, где только можно было бы. Сейчас же, научившись работе с некоторыми блоками периферии вручную, мы можем коснуться SPL и сравнить КПД обоих подходов в реальной задачи.
Цель
В качестве учебной цели, давайте помигаем светодиодом по средствам ШИМ-а (Широтно-импульсной модуляции.), при этом регулируя кнопками его частоту. Кнопки так же будем опрашивать в прерывании, вызванного другим таймером, а в момент опроса — будем инвертировать состояние второго светодиода. В реализации данной задачи нам понадобится:
1. Настроить вывод порта ввода-вывода, подключенного к светодиоду, для ручного управления. Этим светодиодом будем показывать, что мы зашли в прерывание и опросили кнопки.
2. Настроить вывод порта ввода-вывода, подключенного ко второму светодиоду, в режим управления от таймера. Именно сюда будет подаваться ШИМ сигнал от первого таймера.
3. Настроить первый таймер в режим подачи ШИМ сигнала на второй светодиод.
4. Настроить таймер для вызова прерывания, в котором мы будем опрашивать клавиши.
5. Разрешить использование прерываний на уровне таймера (по конкретному событию) и на уровне общей таблице векторов прерываний от второго таймера в целом.
Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Генерируем и воспроизводим звук. Часть четвертая: финал
Введение.
В данной статье мы закончим тему генерации звука средствами нашего микроконтроллера. Создадим одноголосную и многоголосую основу для музыкальной открытки.
Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Генерируем и воспроизводим звук. Часть третья: TIM + DMA
Вступление
В предыдущей статье я рассказал о своем первом знакомстве с DMA. В ней мы делали связку DMA + SysTick. Статья получилась очень специфичной и сложной, ввиду неопытного кривого подхода. Набравшись опыта, в данной статье я расскажу о куда более простом и понятном способе работы с DMA.Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Генерируем и воспроизводим звук. Часть вторая: освоение DMA
DMA, или Direct Memory Access – технология прямого доступа к памяти, минуя центральный процессор.— (с) отсюда.
Переходим с STM32 на российский микроконтроллер К1986ВЕ92QI. Генерируем и воспроизводим звук. Часть первая
Вступление
В предыдущей статье мы поговорили о настройке тактовой частоты микроконтроллера. Сейчас мне хотелось бы рассмотреть варианты работы со звуком: его генерирование и воспроизведение. По началу мне хотелось написать одну большую статью, в которой было бы рассмотрено все. От генерации прямоугольных импульсов до воспроизведения FLAC с microSD карты. Но статья получилось просто гигантской. Так что я решил разбить ее на несколько статьей поменьше. В каждой из которых я разбираю по одному периферийному модулю.
Information
- Rating
- Does not participate
- Location
- Красноярск, Красноярский край, Россия
- Date of birth
- Registered
- Activity