Кажется, не проходит и дня, чтобы на Хабре не появлялись посты о нейронных сетях. Они сделали машинное обучение доступным не только большим компаниям, но и любому человеку, который умеет программировать. Несмотря на то, что всем кажется, будто о нейросетях уже всем все известно, мы решили поделиться обзорной лекцией, прочитанной в рамках Малого ШАДа, рассчитанного на старшеклассников с сильной математической подготовкой.
Материал, рассказанный нашим коллегой Константином Лахманом, обобщает историю развития нейросетей, их основные особенности и принципиальные отличия от других моделей, применяемых в машинном обучении. Также речь пойдёт о конкретных примерах применения нейросетевых технологий и их ближайших перспективах. Лекция будет полезна тем, кому хочется систематизировать у себя в голове все самые важные современные знания о нейронных сетях.
Константин klakhman Лахман закончил МИФИ, работал исследователем в отделе нейронаук НИЦ «Курчатовский институт». В Яндексе занимается нейросетевыми технологиями, используемыми в компьютерном зрении.
Под катом — подробная расшифровка со слайдами.
Материал, рассказанный нашим коллегой Константином Лахманом, обобщает историю развития нейросетей, их основные особенности и принципиальные отличия от других моделей, применяемых в машинном обучении. Также речь пойдёт о конкретных примерах применения нейросетевых технологий и их ближайших перспективах. Лекция будет полезна тем, кому хочется систематизировать у себя в голове все самые важные современные знания о нейронных сетях.
Константин klakhman Лахман закончил МИФИ, работал исследователем в отделе нейронаук НИЦ «Курчатовский институт». В Яндексе занимается нейросетевыми технологиями, используемыми в компьютерном зрении.
Под катом — подробная расшифровка со слайдами.