Search
Write a publication
Pull to refresh
1
0
Алексей Ефремов @alekseyefremov

Пользователь

Send message

Быстрая, экономная, устойчивая…

Reading time10 min
Views61K

Если вам понадобится алгоритм сортировки массива, который:
  • Работал бы гарантированно за O(N*log(N)) операций (обменов и сравнений);
  • Требовал бы O(1) дополнительной памяти;
  • Был бы устойчивым (то есть, не менял порядок элементов с одинаковыми ключами)

то вам, скорее всего, предложат ограничиться любыми двумя из этих трёх пунктов. И, в зависимости от вашего выбора, вы получите, например, либо сортировку слиянием (требует O(N) дополнительной памяти), либо пирамидальную сортировку (неустойчив), либо сортировку пузырьком (работает за O(N2)). Если вы ослабите требование на память до O(log(N)) («на рекурсию»), то для вас найдётся алгоритм со сложностью O(N*(log(N)2) — довольно малоизвестный, хотя именно его версия используется в реализации метода std::stable_sort().

На вопрос, можно ли добиться выполнения одновременно всех трёх условий, большинство скажет «вряд ли». Википедия о таких алгоритмах не знает. Среди программистов ходят слухи, что вроде бы, что-то такое существует. Некоторые говорят, что есть «устойчивая быстрая сортировка» — но у той реализации, которую я видел, сложность была всё те же O(N*(log(N)2) (по таймеру). И только в одном обсуждении на StackOverflow дали ссылку на статью B-C. Huang и M. A. Langston, Fast Stable Merging and Sorting in Constant Extra Space (1989-1992), в которой описан алгоритм со всеми тремя свойствами.

Так что же это за алгоритм?

Алгоритм сортировки Timsort

Reading time6 min
Views162K
Timsort, в отличии от всяких там «пузырьков» и «вставок», штука относительно новая — изобретен был в 2002 году Тимом Петерсом (в честь него и назван). С тех пор он уже стал стандартным алгоритмом сортировки в Python, OpenJDK 7 и Android JDK 1.5. А чтобы понять почему — достаточно взглянуть на вот эту табличку из Википедии.



Среди, на первый взгляд, огромного выбора в таблице есть всего 7 адекватных алгоритмов (со сложностью O(n logn) в среднем и худшем случае), среди которых только 2 могут похвастаться стабильностью и сложностью O(n) в лучшем случае. Один из этих двух — это давно и хорошо всем известная «Сортировка с помощью двоичного дерева». А вот второй как-раз таки Timsort.

Алгоритм построен на той идее, что в реальном мире сортируемый массив данных часто содержат в себе упорядоченные (не важно, по возрастанию или по убыванию) подмассивы. Это и вправду часто так. На таких данных Timsort рвёт в клочья все остальные алгоритмы.
Читать дальше →

Структуры данных. Неформальный гайд

Reading time6 min
Views170K


Конечно, можно быть успешным программистом и без сакрального знания структур данных, однако они совершенно незаменимы в некоторых приложениях. Например, когда нужно вычислить кратчайший путь между двумя точками на карте, или найти имя в телефонной книжке, содержащей, скажем, миллион записей. Не говоря уже о том, что структуры данных постоянно используются в спортивном программировании. Рассмотрим некоторые из них более подробно.
Читать дальше →

Splay-деревья

Reading time8 min
Views67K
Сбалансированное дерево поиска является фундаментом для многих современных алгоритмов. На страницах книг по Computer Science вы найдете описания красно-черных, AVL-, B- и многих других сбалансированных деревьев. Но является ли перманентная сбалансированность тем Святым Граалем, за которым следует гоняться?

Представим, что мы уже построили дерево на ключах и теперь нам нужно отвечать на запросы, лежит ли заданный ключ в дереве. Может так оказаться, что пользователя интересует в основном один ключ, и остальные он запрашивает только время от времени. Если ключ лежит далеко от корня, то запросов могут отнять времени. Здравый смысл подсказывает, что оценку можно оптимизировать до , надстроив над деревом кэш. Но этот подход имеет некоторый недостаток гибкости и элегантности.

Сегодня я расскажу о splay-деревьях. Эти деревья не являются перманентно сбалансированными и на отдельных запросах могут работать даже линейное время. Однако, после каждого запроса они меняют свою структуру, что позволяет очень эффективно обрабатывать часто повторяющиеся запросы. Более того, амортизационная стоимость обработки одного запроса у них , что делает splay-деревья хорошей альтернативой для перманентно сбалансированных собратьев.
Читать дальше...

Структуры данных: бинарные деревья. Часть 1

Reading time6 min
Views382K

Интро



Этой статьей я начинаю цикл статей об известных и не очень структурах данных а так же их применении на практике.

В своих статьях я буду приводить примеры кода сразу на двух языках: на Java и на Haskell. Благодаря этому можно будет сравнить императивный и функциональный стили программирования и увидить плюсы и минусы того и другого.

Начать я решил с бинарных деревьев поиска, так как это достаточно базовая, но в то же время интересная штука, у которой к тому же существует большое количество модификаций и вариаций, а так же применений на практике.
Читать дальше →

Система непересекающихся множеств и её применения

Reading time10 min
Views79K
Добрый день, Хабрахабр. Это еще один пост в рамках моей программы по обогащению базы данных крупнейшего IT-ресурса информацией по алгоритмам и структурам данных. Как показывает практика, этой информации многим не хватает, а необходимость встречается в самых разнообразных сферах программистской жизни.
Я продолжаю преимущественно выбирать те алгоритмы/структуры, которые легко понимаются и для которых не требуется много кода — а вот практическое значение сложно недооценить. В прошлый раз это было декартово дерево. В этот раз — система непересекающихся множеств. Она же известна под названиями disjoint set union (DSU) или Union-Find.

Условие


Поставим перед собой следующую задачу. Пускай мы оперируем элементами N видов (для простоты, здесь и далее — числами от 0 до N-1). Некоторые группы чисел объединены в множества. Также мы можем добавить в структуру новый элемент, он тем самым образует множество размера 1 из самого себя. И наконец, периодически некоторые два множества нам потребуется сливать в одно.

Формализируем задачу: создать быструю структуру, которая поддерживает следующие операции:

MakeSet(X) — внести в структуру новый элемент X, создать для него множество размера 1 из самого себя.
Find(X) — возвратить идентификатор множества, которому принадлежит элемент X. В качестве идентификатора мы будем выбирать один элемент из этого множества — представителя множества. Гарантируется, что для одного и того же множества представитель будет возвращаться один и тот же, иначе невозможно будет работать со структурой: не будет корректной даже проверка принадлежности двух элементов одному множеству if (Find(X) == Find(Y)).
Unite(X, Y) — объединить два множества, в которых лежат элементы X и Y, в одно новое.

На рисунке я продемонстрирую работу такой гипотетической структуры.


Как такое сделать и зачем оно нужно

Моноиды и их приложения: моноидальные вычисления в деревьях

Reading time20 min
Views24K
Приветствую, Хабрахабр. Сегодня я хочу, в своём обычном стиле, устроить сообществу небольшой ликбез по структурам данных. Только на этот раз он будет гораздо более всеобъемлющ, а его применения и практичность — простираться далеко в самые разнообразные области программирования. Самые красивые применения, я, конечно же, покажу и опишу непосредственно в статье.

Нам понадобится капелька абстрактного мышления, знание какого-нибудь сбалансированного дерева поиска (например, описанного мною ранее декартова дерева), умение читать простой код на C#, и желание применить полученные знания.

Итак, на повестке сегодняшнего дня — моноиды и их основное применение для кеширования вычислений в деревьях.

Моноид как концепция


Представьте себе множество чего угодно, множество, состоящее из объектов, которыми мы собираемся манипулировать. Назовём его M. На этом множестве мы вводим бинарную операцию, то есть функцию, которая паре элементов множества ставит в соответствие новый элемент. Здесь и далее эту абстрактную операцию мы будем обозначать "⊗", и записывать выражения в инфиксной форме: если a и b — элементы множества, то c = ab — тоже какой-то элемент этого множества.

Например, рассмотрим все строки, существующие на свете. И рассмотрим операцию конкатенации строк, традиционно обозначаемую в математике "◦", а в большинстве языков программирования "+": "John""Doe" = "JohnDoe". Здесь множество M — строки, а "◦" выступает в качестве операции "⊗".
Или другой пример — функция fst, известная в функциональных языках при манипуляции с кортежами. Из двух своих аргументов она возвращает в качестве результата первый по порядку. Так, fst(5, 2) = 5; fst("foo", "bar") = "foo". Безразлично, на каком множестве рассматривать эту бинарную операцию, так что в вашей воле выбрать любое.

Далее мы на нашу операцию "⊗" накладываем ограничение ассоциативности. Это значит, что от неё требуется следующее: если с помощью "⊗" комбинируют последовательность объектов, то результат должен оставаться одинаковым вне зависимости от порядка применения "⊗". Более строго, для любых трёх объектов a, b и c должно иметь место:
(ab) ⊗ c = a ⊗ (bc)
Легко увидеть, что конкатенация строк ассоциативна: не важно, какое склеивание в последовательности строк выполнять раньше, а какое позже, в итоге все равно получится общая склейка всех строк в последовательности. То же касается и функции fst, ибо:
fst(fst(a, b), c) = a
fst(a, fst(b, c)) = a
Цепочка применений fst к последовательности в любом порядке всё равно выдаст её головной элемент.

И последнее, что мы потребуем: в множестве M по отношению к операции должен существовать нейтральный элемент, или единица операции. Это такой объект, который можно комбинировать с любым элементом множества, и это не изменит последний. Формально выражаясь, если e — нейтральный элемент, то для любого a из множества имеет место:
ae = ea = a
В примере со строками нейтральным элементом выступает пустая строка "": с какой стороны к какой строке её ни приклеивай, строка не поменяется. А вот fst в этом отношении нам устроит подлянку: нейтральный элемент для неё придумать невозможно. Ведь fst(e, a) = e всегда, и если ae, то свойство нейтральности мы теряем. Можно, конечно, рассмотреть fst на множестве из одного элемента, но кому такая скука нужна? :)

Каждую такую тройку <M, ⊗, e> мы и будем торжественно называть моноидом. Зафиксируем это знание в коде:
public interface IMonoid<T> {
    T Zero { get; }
    T Append(T a, T b);
}

Больше примеров моноидов, а также где мы их, собственно, применять будем, лежит под катом.
Читать дальше →

Декартово дерево: Часть 3. Декартово дерево по неявному ключу

Reading time12 min
Views59K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Очень сильное колдунство


После всей кучи возможностей, которые нам предоставило декартово дерево в предыдущих двух частях, сегодня я совершу с ним нечто странное и кощунственное. Тем не менее, это действие позволит рассматривать дерево в совершенно новой ипостаси — как некий усовершенствованный и мощный массив с дополнительными фичами. Я покажу, как с ним работать, покажу, что все операции с данными из второй части сохраняются и для модифицированного дерева, а потом приведу несколько новых и полезных.

Вспомним-ка еще раз структуру дерамиды. В ней есть ключ x, по которому дерамида есть дерево поиска, случайный ключ y, по которому дерамида есть куча, а также, возможно, какая-то пользовательская информация с (cost). Давайте совершим невозможное и рассмотрим дерамиду… без ключей x. То есть у нас будет дерево, в котором ключа x нет вообще, а ключи y — случайные. Соответственно, зачем оно нужно — вообще непонятно :)

На самом деле расценивать такую структуру стоит как декартово дерево, в котором ключи x все так же где-то имеются, но нам их не сообщили. Однако клянутся, что для них, как полагается, выполняется условие двоичного дерева поиска. Тогда можно представить, что эти неизвестные иксы суть числа от 0 до N-1 и неявно расставить их по структуре дерева:

Получается, что в дереве будто бы не ключи в вершинах проставлены, а сами вершины пронумерованы. Причем пронумерованы в уже знакомом с прошлой части порядке in-order обхода. Дерево с четко пронумерованными вершинами можно рассматривать как массив, в котором индекс — это тот самый неявный ключ, а содержимое — пользовательская информация c. Игреки нужны только для балансировки, это внутренние детали структуры данных, ненужные пользователю. Иксов на самом деле нет в принципе, их хранить не нужно.

В отличие от прошлой части, этот массив не приобретает автоматически никаких свойств, вроде отсортированности. Ведь на информацию-то у нас нет никаких структурных ограничений, и она может храниться в вершинах как попало.
Если интересно - под кат

Декартово дерево: Часть 2. Ценная информация в дереве и множественные операции с ней

Reading time14 min
Views41K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Тема сегодняшней лекции


В прошлый раз мы с вами познакомились — скажем прямо, очень обширно познакомились — с понятием декартового дерева и основным его функционалом. Только до сих мы с вами использовали его одним-единственным образом: как «квази-сбалансированное» дерево поиска. То есть пускай нам дан массив ключей, добавим к ним случайно сгенерированные приоритеты, и получим дерево, в котором каждый ключ можно искать, добавлять и удалять за логарифмическое время и минимум усилий. Звучит неплохо, но мало.

К счастью (или к сожалению?), реальная жизнь такими пустяковыми задачами не ограничивается. О чем сегодня и пойдет речь. Первый вопрос на повестке дня — это так называемая K-я порядковая статистика, или индекс в дереве, которая плавно подведет нас к хранению пользовательской информации в вершинах, и наконец — к бесчисленному множеству манипуляций, которые с этой информацией может потребоваться выполнять. Поехали.

Ищем индекс


В математике, K-я порядковая статистика — это случайная величина, которая соответствует K-му по величине элементу случайной выборки из вероятностного пространства. Слишком умно. Вернемся к дереву: в каждый момент времени у нас есть декартово дерево, которое с момента его начального построения могло уже значительно измениться. От нас требуется очень быстро находить в этом дереве K-й по порядку возрастания ключ — фактически, если представить наше дерево как постоянно поддерживающийся отсортированным массив, то это просто доступ к элементу под индексом K. На первый взгляд не очень понятно, как это организовать: ключей-то у нас в дереве N, и раскиданы они по структуре как попало.

Решение и вся статья - под катом

Декартово дерево: Часть 1. Описание, операции, применения

Reading time15 min
Views158K

Оглавление (на данный момент)


Часть 1. Описание, операции, применения.
Часть 2. Ценная информация в дереве и множественные операции с ней.
Часть 3. Декартово дерево по неявному ключу.
To be continued...

Декартово дерево (cartesian tree, treap) — красивая и легко реализующаяся структура данных, которая с минимальными усилиями позволит вам производить многие скоростные операции над массивами ваших данных. Что характерно, на Хабрахабре единственное его упоминание я нашел в обзорном посте многоуважаемого winger, но тогда продолжение тому циклу так и не последовало. Обидно, кстати.

Я постараюсь покрыть все, что мне известно по теме — несмотря на то, что известно мне сравнительно не так уж много, материала вполне хватит поста на два, а то и на три. Все алгоритмы иллюстрируются исходниками на C# (а так как я любитель функционального программирования, то где-нибудь в послесловии речь зайдет и о F# — но это читать не обязательно :). Итак, приступим.

Введение


В качестве введения рекомендую прочесть пост про двоичные деревья поиска того же winger, поскольку без понимания того, что такое дерево, дерево поиска, а так же без знания оценок сложности алгоритма многое из материала данной статьи останется для вас китайской грамотой. Обидно, правда?

Следующий пункт нашей обязательной программы — куча (heap). Думаю, также многим известная структура данных, однако краткий обзор я все же приведу.
Представьте себе двоичное дерево с какими-то данными (ключами) в вершинах. И для каждой вершины мы в обязательном порядке требуем следующее: ее ключ строго больше, чем ключи ее непосредственных сыновей. Вот небольшой пример корректной кучи:


На заметку сразу скажу, что совершенно не обязательно думать про кучу исключительно как структуру, у которой родитель больше, чем его потомки. Никто не запрещает взять противоположный вариант и считать, что родитель меньше потомков — главное, выберите что-то одно для всего дерева. Для нужд этой статьи гораздо удобнее будет использовать вариант со знаком «больше».

Сейчас за кадром остается вопрос, каким образом в кучу можно добавлять и удалять из нее элементы. Во-первых, эти алгоритмы требуют отдельного места на осмотр, а во-вторых, нам они все равно не понадобятся.
А теперь собственно про декартово дерево

Дерево ван Эмде Боаса

Reading time6 min
Views19K
Всем доброго времени суток!

Сегодня я расскажу вам об одной интересной структуре данных, про которую слышали лишь немногие и про которую очень незаслуженно мало написано в рунете, да и в англоязычном информации, в общем-то, тоже негусто. Решено было исправить ситуацию и поделиться с общественностью в доступной форме этой достаточно экзотической структурой данных.

Дерево ван Эмде Боаса (van Emde Boas tree) — ассоциативный массив, который позволяет хранить целые числа в диапазоне [0; U), где U = 2k, проще говоря, числа, состоящие не более чем из k бит. Казалось бы, зачем нужно еще какое-то дерево, да еще позволяющее хранить только целые числа, когда существует множество различных сбалансриованных двоичных деревьев поиска, позволяющих выполнять операции вставки, удаления и прочие за O(log n), где n — количество элементов в дереве?

Главная особенность этой структуры — выполнение всех операций за время O(log(log(U))) независимо от количества хранящихся в ней элементов.

Что же там еще есть такого вкусного?

Свой инструмент нужно знать в лицо: обзор наиболее часто используемых структур данных

Reading time8 min
Views65K
image
Некоторое время назад я сходил на собеседование в одну довольно большую и уважаемую компанию. Собеседование прошло хорошо и понравилось как мне, так и, надеюсь, людям его проводившим. Но на следующий день, в процессе разбора полетов, я обнаружил, что в ходе собеседования ответ на как минимум один вопрос был неверен.

Вопрос: Почему поиск в python dict на больших объемах данных быстрее чем итерация по индексированному массиву?

Ответ: В dict хранятся хэши от ключей. Каждый раз, когда мы ищем в dict значение по ключу, мы сначала вычисляем его хэш, а потом (внезапно), выполняем бинарный поиск. Таким образом, сложность составляет O(lg(N))!

На самом деле никакого бинарного поиска тут нет. И сложность алгоритма не O(lg(N)), а Amort. O(1) — так как в основе dict питона лежит структура под названием Hash Table.

Причиной неверного ответа было то, что я не удосужился досконально изучить те структуры, которые лежат в основе работы с коллекциями моего любимого языка. Правда, по результатам опроса нескольких знакомых разработчиков, оказалось что это не только моя проблема, очень многие вообще не задумываются, как работают коллекции в их любимых ЯП. А ведь используем мы их каждый день и не по разу. Так родилась идея этой статьи.
Читать дальше →

Современный троянский конь: история одного расследования

Reading time24 min
Views44K

Всем привет!

Сегодня я расскажу вам об одном троянском коне, забредшем в огород моего очень хорошего знакомого, о том, как я выгонял незваного гостя, о том, что у него внутри и какие уроки из всего этого я вынес.

Если вам интересно — добро пожаловать под кат!
Читать дальше →

Генерация P/Invoke сигнатур в C#. Нецелевое использование Interface Definition Language и OLE Automation Type Libraries

Reading time20 min
Views17K
Это НЕ очередная статья о том что такое P/Invoke.

Итак, допустим в сферическом C# проекте необходимо использовать какую-либо технологию, отсутствующую в .NET, и все что у нас есть это Windows SDK 8.1 в котором имеется лишь набор заголовочных файлов для C/С++. Придется объявлять кучу типов, проверять корректность выравнивания структур и писать различные обертки. Это большое количество рутинной работы, и риск допустить ошибку. Можно конечно написать парсер заголовочных файлов… Тут просто и понятно все кроме количества требуемых на это человекочасов. Поэтому этот вариант отбрасываем и постараемся как либо иначе свести к минимуму количество необходимых действий для взаимодействия с unmanaged кодом.

Кроме того, полученный в результате код не будет зависеть от разрядности процесса, будет сохранена строгая типизация, будет применено автоматическое тестирование.
Читать дальше →

Unmanaged C++ library в .NET. Полная интеграция

Reading time13 min
Views16K
В статье рассмотрена полная интеграция C++ библиотеки в managed окружение с использованием Platform Invoke. Под полной интеграцией подразумевается возможность наследования классов библиотеки, реализации её интерфейсов (интерфейсы будут представлены в managed коде как абстрактные классы). Экземпляры наследников можно будет «передавать» в unmanaged окружение.
Читать дальше →

.NET в unmanaged окружении: platform invoke или что такое LPTSTR

Reading time11 min
Views7.6K
Методика все та же — минимум объяснений, максимум рецептов. Для глубинного понимания происходящих процессов рекомендую обратиться к документации в MSDN — этот раздел уже даже перевели на русский язык.
Читать статью

Как использовать C++ AMP из C#

Reading time5 min
Views12K

В Visual Studio 11 Developer Preview, C++ AMP позволяет ускорить Ваши приложения, используя гетерогенное железо, такое как GPU.
Если Вы являетесь .NET-разработчиком, то все равно сможете использовать C++ AMP в Ваших приложениях. Большинство кода будет писаться на C#, лишь некоторые участки с помощью C++ AMP для его выполнения на GPU, затем использоваться любимый interop-механизм для связывания. Данный пост объяснит, как это сделать через P/invoke.
Читать дальше →

Разные версии JIT в .NET

Reading time6 min
Views21K
Каждый C#-разработчик знает, что C#-компилятор переводит исходный код программы в промежуточный язык под названием Intermediate Language (IL). А за превращение IL в последовательность машинных команд чаще всего отвечает Just-In-Time-компилятор (JIT). Да, на сегодняшний день есть NGen, Mono AOT, .NET Native, но JIT-компиляция всё ещё лидирует в мире .NET-приложений. А вот работает этот самый JIT, знают далеко не все. Если брать в расчёт только реализацию .NET от Microsoft, то стоит различать JIT-x86 и JIT-x64. А ещё за дверями стоит RyuJIT который уже совсем скоро займёт почётное место основного JIT-компилятора. А если вы любите старые версии .NET, то полезно знать, что в разных версиях CLR логика работы JIT отличалась. Исходники у нас теперь открыты, вы можете их посмотреть и осознать, насколько же это большая и сложная тема. Сегодня мы не будем пытаться охватить её, а лишь кратко посмотрим на несколько интересных особенностей отдельных версий JIT-компиляторов. Итак, сегодня в номере:
  • Почему короткий метод может не быть заинлайнен и как этого избежать
  • JIT-баги: опасные и беспощадные
  • Кто и как разматывает циклы
  • Чем отличается размотка маленьких и больших циклов

Читать дальше →

Встречайте RyuJIT: новый JIT-компилятор для .NET

Reading time4 min
Views20K
Мир движется к 64-битным вычислениям, несмотря на то, что в результате программы не всегда работают быстрее или производительнее по сравнению с 32-битными. Многие 32-битные программы, по разным причинам, могут работать быстрее 64-битных. Одним из таких примеров является 64-битный JIT-компилятор .NET-фреймворка. Он выполняет большую работу для того, чтобы ваша программа работала очень быстро, но сам он, увы, не настолько быстр, как хотелось бы. Это мы и собираемся исправить. Представляем x64 JIT-компилятор нового поколения, который способен компилировать 64-битный .NET код в 2 раза быстрее.
Читать дальше →

Автоматизированное создание NuGet-пакетов

Reading time15 min
Views33K

Коль захотел ты сборки передать
И с ними пламенный привет
Нугетом не забудь запаковать
В пакет!


Сразу оговоримся, что в этой статье речь пойдёт о стеке технологий Microsoft .NET.

Часто так бывает, что какое-то подмножество проектов начинает использоваться в разных решениях.

Как правило, программисты, разглядев в соседнем проекте что-то полезное, первое время не заморачиваются — создают папку lib (dll, assemblies и т.п.) и складывают туда скомпилированные сборки из оригинального решения. Со временем становится понятно, что это не самый удобный вариант и вот почему:

  • оригинальное решение начинает развиваться в свою собственную сторону, без учёта «потребителей»: добавляются новые зависимости, обновляются версии .net и т.п. «приколы»;
  • если даже о «потребителях» задумываются, то забывают обновить сборки у них, когда выходит критическое обновление или просто новая версия, а потом всё становится ещё хуже, когда сборок становится больше одной и между ними возникают некоторые зависимости — обновляя одну сборку, получаем проблемы в момент исполнения, т.к. другая сборка может оказаться не той версии;
  • оригинальное решение перестаёт дальше разрабатываться.

Ответом на все эти неприятности может служить вынесение проектов в отдельное решение и создание NuGet-пакета, включающего общие сборки, и смена парадигмы развития этих сборок. По большому счёту, всё это можно сделать и без NuGet, но удовольствия в этом гораздо меньше.Как сделать так, чтобы NuGet-пакет собирался сам автоматически вместе с компиляцией проекта на сервере построения и включал все необходимые свистелки и гуделки — об этом и будет наш рассказ.
Читать дальше →

Information

Rating
Does not participate
Location
Санкт-Петербург, Санкт-Петербург и область, Россия
Date of birth
Registered
Activity