TLDR — это не готовое решение, это попытка самостоятельно разобраться, подобрать архитектуру и обучить генеративно-состязательную модель (GAN) для увеличения картинок в 2 или 4 раза. Я не претендую на то, что моя модель или путь рассуждений лучше каких-то других. Кроме того, относительно недавно стали популярны трансформеры и diffusion модели — заметки не про них.
С заметками не получилось линейной структуры повествования — есть отступления "в сторону" и уточнения. Можно пропускать нерелевантные заметки. Например, описание подготовки данных нужно, если вы хотите воспроизвести эксперименты — а в остальных случаях можно пропустить. Я написал каждую отдельную заметку по-возможности цельной и независимой от других.
Я уже был знаком со свёрточными сетками, но мне хотелось попробовать генеративно-состязательные сети. Понять, почему используют те или иные подходы. Попробовать свои идеи. Посмотреть, насколько быстро можно научить модель и насколько хорошо она будет работать.
Для обучения оказалось достаточно возможностей моего ПК. Какие-то простые эксперименты занимали десятки минут или несколько часов, самый длинный с обучением финальной большой модели — трое суток.