Pull to refresh
12
0
Send message
Каноническое определение у Кочина. Пространства могут быть отличной от 3 размерности. И везде будет одно и тоже — произвол в выборе положительной ориентации.
И как теперь развидеть всё это?
Я понимаю, что школа, но почему нельзя в школе применять аксиматический подход — не понимаю. Ничего сложного в векторном пространстве над полем и в абелевой группе на уровне определений нет. И все проблемы отпадают сами собой
Скажите, вы будете публиковать стенограммы докладов? Очень хочется почитать.
Можно, но пока из других классов решений не предложено решение лучше или не доказано что лучше нельзя, это решение является кандидатом на оптимальное.
Хорошо, чтобы исключить двусмыслие при прочтении, добавлю «при заданных ограничениях». И спрошу: при заданных ограничениях Верно?
К сожалению да. Делаю что могу, кто может пусть сделает лучше.
Все правильно, только наоборот. Формула применима к некоторому классу величин. В формуле используется только математическое ожидание, поэтому разумно взять из этого класса то что попроще, в данном случае — константу.
Потому, что это важно. Так как в классичесом случае формула Эрланга была расчитана только для экспоненциально распределенных, независимых времен обслуживания. От торебования вида распределения математикам удалось избавится. Независмость же, как видно из комментария mayorovp важна.
useMagic в первом примере у вас отбрасывает аргумент.
Видимо, судя по контексту статьи, ожидалось в теле
putStrLn $ f 1 «a»
Предлагаю новое соображение.
Для любой стратегии s (по модулю независимости), для которой существует среднее время доставки. Существует описанная система массового обслуживания, с тем же самым средним даставки и некоторым м, с маленкой добавкой: Надо взять ближайшую смо где вероятность отказа меньше и чуток подкрутить. Чтобы клиенту отказывали с некоторой вероятностью, даже если корова есть.
И подумать: может ли такая стратегия уменьшить расходы на коровник.
Но посмотреть то можешь.
Нет, не постулирует. Не вижу причин, по которым время обслуживания должно быть зависимым в случае счетного размера коровника. В конце концов на эту роль прекрасно подойдет константа
Прекрасно, если вы отвлечетесь и перечитаете предположения в которых сделано решение, там явно указано что m конечно. Иначе это анекдот про счетное колличество математиков в ковбойской интерпритации.
Вы не поняли. Вы не обязаны заказывать коров в момент продажи, но если времена ожидания будут независимыми то вся теория работает и существуют Т и м, для которых прибыль максимальна.
В смысле? То что интенсивность двух потоков равна сумме интенсивностей? Это доказано в учебнике. А то что средняя маржа будет такая — так это потому что у вас биномиальное распределение, с вероятностью I/(I+J) один клиент, J(I+J) второй. Вот оно так и получается.
Для независимых времен обслуживания это доказано. Для зависимых все это, как вы правильно заметили, не работает. Но зато есть первое решение-кандидат. Можно поробовать его обыграть и видно на каком поле. Но вот лично я сильно сомневаюсь в успехе.
Два потока с интенсивностью I и J и маржой x и y соответственно смешиваются в один с интнсивностью I+J и маржой (x*I+y*J)/(I+J).
Что позволяет из двух нерентабельных классов сделать один рентабельный.

Любая стратегия, кроме немедленного заказа после продажи, увеличивает среднее время обслуживания. Это пока единственно что точно верно. Есть гипотеза как выглядит функция r, но доказать я её не могу. Из гипотезы следует что заказывать надо сразу по факту продажи.

Придётся потребовать независимость времени обслуживания. В конце концов остается достаточно много стратегий удовлетворяющих этому условию. Данная статья предлагает хорошего кандидата. А если кто-то сможет обыграть пуассона на зависимостях обслуживания при данных словиях, с удовольствием посмотрю.

Потому, что есть предметы в порядке изучения: анализ, теория меры, теория вероятностей, мат статистика, теория случайных процессов.

Information

Rating
Does not participate
Registered
Activity