Сегодня я бы хотел рассказать о появившемся в версии 1.2 новом пакете, получившем название spark.ml. Он создан, чтобы обеспечить единый высокоуровневый API для алгоритмов машинного обучения, который поможет упростить создание и настройку, а также объединение нескольких алгоритмов в один конвейер или рабочий процесс. Сейчас на дворе у нас версия 1.4.1, и разработчики заявляют, что пакет вышел из альфы, хотя многие компоненты до сих пор помечены как Experimental или DeveloperApi.
Ну что же, давайте проверим, что может новый пакет и насколько он хорош.
Недавно завершился курс Scalable Machine Learning по Apache Spark, рассказывающий о применении библиотеки MLlib для машинного обучения. Курс состоял из видеолекций и практических заданий. Лабораторные работы необходимо было выполнять на PySpark, а поскольку по работе мне чаще приходится сталкиваться со scala, я решил перерешать основные лабы на этом языке, а заодно и лучше усвоить материал. Больших отличий конечно же нет, в основном, это то, что PySpark активно использует NumPy, а в версии со scala используется Breeze.
Первые два практических занятия охватывали изучение основных операций линейной алгебры в NumPy и знакомство с apache spark соответственно. Собственно машинное обучение началось с третьей лабораторной работы, она и разобрана ниже.