Долгие годы люди стремились к всё более реалистичному изображению окружающих их вещей. Много лет прошло от симпатичных наскальных мамонтов до шедевров эпохи Ренессанса и Просвещения. Однако где-то в 19-м веке (примерно, когда стала появляться первая фототехника, ага), что-то пошло не так, и живопись сменила своё направление от реализма к абстракции. Дальше больше; и все "скатилось" до клякс, пятен и потёков, размазанных по холсту или любой другой поверхности стоимостью в миллионы долларов... И при этом зачастую совершенно было непонятно, кто автор "шедевра": 3-х летний ребенок, маститый художник, нейросеть или кот, опрокинувший банку варенья.
Похожие процессы происходят и в мире данных, синтетические, сгенерированные, абстрактные данные обретают всё большую ценность на рынке. Такие данные являются более безопасными, а также позволяют тестировать системы качественнее и воспроизводить проблемы до их появления в продакшене... А еще делать прогнозы, анализ, безопасно обмениваться и многое другое.
В этом посте мы рассмотрим основные моменты генерации данных с нуля (на основе схемы БД), а так же на основе уже существующих данных. Рассмотрим способы, методы, особенности и инструменты. А каждый шаг будем иллюстрировать примерами живых и настоящих SQL-запросов (в основном PostgreSQL-flavour, но постараемся и не только). И в итоге убедимся, что SQL позволяет нам не только эффективно работать с уже существующими данными (на минуточку, уже почти на протяжении 50 лет), но с помощью него их можно еще и довольно эффектно придумывать.