Pull to refresh
0
@nikbobukhread⁠-⁠only

User

Send message

От эвристики до машинного обучения: поисковые подсказки в Ситимобил

Reading time8 min
Views3.1K


Всем привет! Меня зовут Михаил Дьячков, и в Ситимобил я занимаюсь машинным обучением. Сегодня я расскажу вам о нашем новом алгоритме формирования поисковых подсказок конечных пунктов назначения. Вы узнаете, как на первый взгляд довольно простая задача превратилась в интересный сценарий, с помощью которого, мы надеемся, у нас получилось немного облегчить жизнь пользователей. Мы продолжаем внимательно следить за работой нового алгоритма и впоследствии будем его «подкручивать», чтобы поддерживать качество ранжирования на высоком уровне. Для всех пользователей мы запустим алгоритм в ближайшие несколько недель, но уже готовы рассказать о долгом пути, который мы прошли от эвристики до алгоритма машинного обучения и выкатки его в эксплуатацию.
Читать дальше →
Total votes 8: ↑6 and ↓2+5
Comments0

Switchback-эксперименты в Ситимобил. Эпизод 1: Скрытая сила switchback

Reading time12 min
Views17K

Сегодня с вами на связи отдел динамического ценообразования Ситимобил. И мы начинаем серию статей о том, как мы проводим и оцениваем ценовые эксперименты внутри нашего маркетплейса.

В этой статье мы расскажем вводную информацию про switchback и сетевой эффект.

Читать далее
Total votes 14: ↑14 and ↓0+14
Comments8

Динамическое ценообразование, или Как Яндекс.Такси прогнозирует высокий спрос

Reading time5 min
Views69K


Раньше для вызова такси приходилось звонить на разные номера диспетчерских служб и ждать подачу машины полчаса или даже больше. Теперь сервисы такси хорошо автоматизированы, а среднее время подачи автомобиля Яндекс.Такси в Москве около 3-4 минут. Но стоит пойти дождю или закончиться массовому мероприятию, и мы вновь можем столкнуться с дефицитом свободных машин.

Меня зовут Скогорев Антон, я руковожу группой разработки эффективности платформы в Яндекс.Такси. Сегодня я расскажу читателям Хабра, как мы научились прогнозировать высокий спрос и дополнительно привлекать водителей, чтобы пользователи могли найти свободную машину в любое время. Вы узнаете, как формируется коэффициент, влияющий на стоимость заказа. Там всё далеко не так просто, как может показаться на первый взгляд.

Читать дальше →
Total votes 72: ↑66 and ↓6+60
Comments280

Как Яндекс.Такси прогнозирует время подачи автомобиля с помощью машинного обучения

Reading time6 min
Views26K
Представьте, что вам надо вызвать такси. Вы открываете приложение, видите, что машина приедет минут через семь, нажимаете «Заказать» — и… автомобиль в 15 минутах от вас, если вообще найден. Согласитесь, неприятно?

Под катом поговорим о том, как методы машинного обучения помогают Яндекс.Такси более качественно прогнозировать ETA (Estimated Time of Arrival — ожидаемое время прибытия).


Читать дальше →
Total votes 35: ↑32 and ↓3+29
Comments29

Graceful degradation. Доклад Яндекс.Такси

Reading time7 min
Views31K
Сервисы необходимо писать так, чтобы минимальная функциональность сохранялась всегда — даже если откажут критически важные компоненты. Илья Сидоров, руководитель одной из команд продуктовой разработки бэкенда Яндекс.Такси, объяснил в своем докладе, как мы даем пользователю заказать машину, когда отдельные части системы не работают, и по какой логике мы активируем упрощенные версии сервиса.


Важно писать не только сервисы, которые хорошо работают, но и сервисы, которые хорошо ломаются.
Total votes 53: ↑48 and ↓5+43
Comments29

Как в Яндекс.Такси ищут машины, когда их нет

Reading time6 min
Views46K
image

Хороший сервис для заказа такси должен быть безопасным, надёжным и быстрым. Пользователь не станет вдаваться в детали: ему важно, чтобы он нажал кнопку «Заказать» и как можно быстрее получил машину, которая доставит его из точки А в точку Б. Если рядом нет машин — сервис должен сразу об этом сообщить, чтобы у клиента не складывалось ложных ожиданий. Но если плашка «Нет машин» будет высвечиваться слишком часто, то логично, что человек просто перестанет пользоваться этим сервисом и уйдёт к конкуренту.

В этой статье я хочу рассказать о том, как при помощи машинного обучения мы решали задачу поиска машин на территории с малой плотностью (проще говоря — там, где, на первый взгляд, нет машин). И что из этого вышло.
Читать дальше →
Total votes 50: ↑45 and ↓5+40
Comments58

Множественные эксперименты: теория и практика

Reading time5 min
Views31K
В современном мире сложно представить развитие продукта без A/B-тестирования. Чтобы успешно запустить продукт или новую функциональность — надо грамотно спроектировать A/B, рассчитать и интерпретировать его результаты. Иногда нам требуется тестирование более чем для двух групп. В этой статье мы рассмотрим как раз такой случай — множественное тестирование:

  • поговорим о том, когда и зачем следует проводить множественные тесты;
  • рассмотрим основные методы расчёта результатов тестов и математические принципы, на которых основаны методы;
  • приведём примеры программной реализации методов; эти примеры вы сможете использовать в своих проектах.

Итак, приступим.


Читать дальше →
Total votes 16: ↑16 and ↓0+16
Comments1

Яндекс.Маршрутизация: как мы окунулись в логистику и решили поменять будущее

Reading time16 min
Views34K
Этот текст возник благодаря появившейся в Яндексе забаве random coffee — система назначает встречу двум случайным сотрудникам, если они указали, что хотят участвовать в таких встречах. Мои собеседники находили рассказ о том, чем я занимаюсь, интересным, и вот у меня дошли руки предложить его более широкой аудитории.

До Хабра я выступил с гостевой лекцией на факультете компьютерных наук Вышки и Яндекса — рассказал студентам ФКН ровно то же самое, о чем сейчас расскажу вам (в конце поста есть видео). А именно — как путешествия с водителями, развозящими заказы из интернет-магазинов, убедили нашу команду делать новый сервис про логистику. Надеюсь, у меня получится передать вам мои ощущения от этой сферы: я поездил в «Газели» и «Ларгусе», послушал жалобы сотрудников на придирчивую «тетку из Ногинска» и стал свидетелем того, как заказ из трех самокатов для трех детей превратился в драму. А в конце поговорим про технологии.
Читать дальше →
Total votes 38: ↑34 and ↓4+50
Comments22

Сотни тысяч маршрутов в секунду на ядро. Опыт Яндекс.Маршрутизации

Reading time5 min
Views14K


Пару недель назад Даня Тарарухин рассказал на Хабре, как появился наш сервис, Яндекс.Маршрутизация, и как он помогает компаниям с логистикой. Создавая платформу, мы решили несколько интересных проблем, одной из которых и посвящён сегодняшний пост. Я хочу поговорить о самом планировании маршрутов и необходимых для этого ресурсах.
Читать дальше →
Total votes 28: ↑24 and ↓4+29
Comments49

Увеличение чувствительности A/Б-тестов с помощью Cuped. Доклад в Яндексе

Reading time12 min
Views35K
CUPED (Controlled-experiment Using Pre-Experiment Data) — техника A/Б-экспериментов, которую стали применять в продакшене сравнительно недавно. Она позволяет увеличить чувствительность метрик за счёт использования данных, полученных ранее. Чем больше чувствительность, тем более слабые изменения можно замечать и учитывать в эксперименте. Первой компанией, внедрившей CUPED, была Microsoft. Теперь этой техникой пользуются многие международные фирмы. В своём докладе Валерий Бабушкин venheads объяснил, в чём заключается смысл CUPED и каких результатов можно достичь, а перед этим разобрал метод стратификации, который также улучшает чувствительность.


— Меня зовут Валерий Бабушкин, я директор по моделированию и анализу данных в X5 Retail Group и советник в Яндекс.Маркете. В свободное время преподаю в Высшей школе экономики и частенько летаю в Казахстан, преподаю в Нацбанке Казахстана.
Читать дальше →
Total votes 8: ↑5 and ↓3+8
Comments0

Как мы сэкономили время курьерам. Логистика в Яндекс.Еде

Reading time5 min
Views48K


Всем привет! Меня зовут Роман Халкечев, я руковожу отделом аналитики в Яндекс.Еде. Одно из ключевых направлений этого сервиса — логистика. Эффективность алгоритмов логистики во многом и определяет само существование сервисов доставки. Сегодня я расскажу читателям Хабра о нашем новом алгоритме, который помог курьерам сократить время простоя. Вы узнаете, из чего складывается время ожидания доставки заказа и зачем мы считали скорость приготовления килограмма условной еды. Но обо всём по порядку.


Яндекс.Еда представляет собой маркетплейс: на сервисе есть спрос и есть предложение. Спрос — это заказы пользователей. Предложение — курьеры. Разумеется, под предложением мы также понимаем рестораны, но в контексте этого поста остановимся именно на курьерах. Главная задача сервиса — поддерживать баланс: тогда будут счастливы и пользователи (они быстро получат еду), и курьерские службы (заказов хватит всем курьерам). Чтобы сохранять баланс и переживать локальный рост или падение спроса, нам необходимо повышать эффективность доставки. Под эффективностью мы понимаем оборачиваемость — среднее число заказов, которые курьер успевает доставить за час. Чем выше этот показатель, тем эффективнее работает доставка в целом.

Читать дальше →
Total votes 52: ↑50 and ↓2+65
Comments87

Как и зачем мы внесли 22 тысячи изменений в дизайн Яндекс.Карт

Reading time7 min
Views60K
Привет, меня зовут Тая Лавриненко, я дизайнер-картограф из команды Яндекс.Карт. Как и всё на свете, карты имеют свойство устаревать, поэтому в течение прошлого года мы проектировали и поэтапно внедряли новый, более сбалансированный стиль Карт. Этот редизайн — одно из самых значимых и заметных обновлений картографического стиля сервиса за последние 5 лет.




Total votes 82: ↑78 and ↓4+106
Comments200

Как и зачем мы создаём собственную курьерскую платформу

Reading time14 min
Views11K
Всем привет, меня зовут Алексей Остриков, я руковожу разработкой в Яндекс.Маркете. Когда-то я много-много писал код, затем полтора года руководил группой бэкенда одного из сервисов Маркета, а сейчас отвечаю за разработку курьерской платформы Маркета.

Сегодня я расскажу, почему доставка на аутсорсе — это не всегда хорошо, для чего нужна прозрачность процессов и как мы за полтора года написали платформу, которая помогает нашим курьерам доставлять заказы. А ещё поделюсь тремя историями из мира разработки.


На фото — команда курьерской платформы десять месяцев назад. В те времена она помещалась в одной комнате. Сейчас нас стало в 5 раз больше.

Читать дальше →
Total votes 45: ↑31 and ↓14+26
Comments18

Время — деньги: анализируй А/В-тесты разумно

Reading time10 min
Views13K


Всем привет! Меня зовут Кирилл, я работаю в продуктовом направлении команды Data Science. Сегодня я расскажу о том, как мы в Delivery Club автоматизируем A/B-тестирование. Основная часть статьи посвящена аналитике, но мы кратко затронем и остальные аспекты.
Читать дальше →
Total votes 22: ↑22 and ↓0+22
Comments4

Геопространственное моделирование с применением методов машинного обучения

Reading time8 min
Views5.5K


Всем привет! Меня зовут Константин Измайлов, я руководитель направления Data Science в Delivery Club. Мы работаем над многочисленными интересными и сложными задачами: от формирования классических аналитических отчетов до построения рекомендательных моделей в ленте приложения.

Сегодня я расскажу про одну из задач, которую мы решали: про автоматизацию построения зон доставки ресторанов. Зона доставки — это область вокруг заведения, и когда вы в ней находитесь, этот ресторан отображается в списке доступных для заказа. Несмотря на всю простоту формулировки, построение зон доставки ресторанов достаточно непростая задача, в которой встречается много подводных камней не только со стороны технической реализации, но и на этапе внедрения. Я расскажу про предпосылки появления этой задачи, подходы (от более простого к сложному) и подробно рассмотрю алгоритм построения зоны доставки.

Статья будет полезна не только техническим специалистам, которые могут вдохновиться нашими подходами по работе с геоданными, но и менеджерам, которые смогут прочитать про процесс интеграции нашей модели в бизнес, увидев «грабли», а самое главное — результаты, которых удалось добиться.

Статья написана по мотивам выступления с Евгением Макиным на конференции Highload++ Весна 2021. Для тех, кто любит видео, — ищите его в конце статьи.
Total votes 30: ↑30 and ↓0+30
Comments10

Как мы распределяем заказы между водителями в Яндекс.Такси

Reading time5 min
Views179K
image

Одна из главных задач в Яндекс.Такси — как сделать так, чтобы к пользователю быстро приезжала машина, а у водителя сокращалось время «холостого пробега» (то есть время, когда он на линии без пассажира). Казалось бы, всё просто: пользователь выбирает тариф, указывает дополнительные пожелания (детское кресло, например). Остаётся отфильтровать водителей на линии по этим критериям, выбрать ближайшего и предложить ему заказ. Однако всё так просто только на первый взгляд.

Сегодня я расскажу сообществу Хабра о том, как мы выбираем наиболее подходящего водителя и как этот процесс эволюционировал со временем. Вы узнаете о двух подходах к решению задачи.
Читать дальше →
Total votes 125: ↑119 and ↓6+113
Comments196

Information

Rating
Does not participate
Registered
Activity