Арбелос
Скачать статью в виде документа Mathematica (NB), CDF-файла или PDF.
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.
В этой статье систематически проверяются некоторые свойства фигуры, известной с древних времён, называемой арбелос. Она включает в себя несколько новых открытий и обобщений, представленных автором данной работы.
Введение
Будучи мотивирован вычислительными преимуществами, которыми обладает Mathematica, некоторое время назад я решил приступить к исследованию свойств арбелоса — весьма интересной геометрической фигуры. С тех пор я был впечатлен большим количеством удивительных открытий и вычислительных проблем, которые возникали из-за всё расширяющегося объёма литературы, касающейся этого примечательного объекта. Я вспоминаю его сходство с нижней частью культового велосипеда пенни-фартинг из The Prisoner (телесериал 1960-х), шутовской шапкой Панча (знаменитых Punch and Judy) и символом инь-ян с одной перевёрнутой дугой; см. рис. 1. В настоящее время существует специализированный каталог архимедовых кругов (круги, содержащиеся в арбелосе) [1] и важные применения свойств арбелоса, которые лежат вне поля математики и вычислительных наук [2].
Многие известные исследователи занимались этой темой, в том числе Архимед (убитый римским солдатом в 212 г. до н.э.), Папп (320 г. н.э.), Кристиан О. Мор (1835-1918), Виктор Тебо (1882-1960), Леон Банкофф (1908-1997), Мартин Гарднер (1914-2010). С недавних пор свойствами арбелоса занимаются Клейтон Додж, Питер Ай. Ву, Томас Шох, Хироши Окумура, Масаюки Ватанабе и прочие.
Леон Банкофф — человек, который привлекал всеобщее внимание к арбелосу в последние 30 лет. Шох привлёк внимание Бэнкоффа к арбелосу в 1979 году, открыв несколько новых архимедовых кругов. Он послал 20-страничную рукописную работу Мартину Гарднеру, который направил её Бэнкоффу, который затем отправил 10-страничный фрагмент копии рукописи Доджу в 1996 году. Из-за смерти Бэнкоффа запланированная совместная работа была прервана, пока Додж не сообщил о некоторых новых открытиях [3]. В 1999 году Додж сказал, что ему потребуется от пяти до десяти лет, чтобы отсортировать весь материал, которым он располагает, разложив всё это дело по стопкам. В настоящее время эта работа все ещё продолжается. Не удивительно, что в четвертом томе The Art of Computer Programming, сказано о том, что важная работа требует большого количества времени.
Рис. 1. Велосипед пенни-фартинг, куклы Панч и Джуди, физический арбелос.
Арбелос (“нож сапожника” в греческом языке) назван так из-за своего сходства с лезвием ножа, использующегося сапожниками (Рис. 1). Арбелос — плоская область, ограниченная тремя полуокружностями и общей базовой линией (рис. 2). Архимед, вероятно, был первым, кто начал изучать математические свойства арбелоса. Эти свойства описаны в теоремах с 4-ой по 8-ую его книги Liber assumptorum (или Книги лемм). Возможно, эту работу написал не Архимед. Сомнения появились после перевода с арабского Книги лемм, в которой Архимед упоминается неоднократно, но ничего не сказано о его авторстве (однако, существует мнение, что эта книга — подделка [4]). Книга Лемм так же содержит знаменитую архимедову Problema Bovinum [5].
Эта статья направлена на систематическое изложение некоторых свойств арбелоса и не носит исчерпывающий характер. Наша цель состоит в том, чтобы выработать единую вычислительную методологию для того, чтобы преподнести данные свойства в формате обучающей статьи. Все свойства выстроены в рамках определённой последовательности и представлены с доказательствами. Эти доказательства были реализованы посредством тестирования эквивалентных вычисляемых утверждений. В ходе выполнения данной работы автором было совершено несколько открытий и сделано несколько обобщений.
Мы называем наибольший полукруг верхней дугой, а два маленьких — левосторонней и правосторонней дугами, или просто боковыми дугами, если нет необходимости их различать. Мы используем
Эта функция задаёт арбелос.
Так можно нарисовать сам арбелос.
Рис 2. Арбелос.
Свойство 1
Периметр арбелоса равен периметру наибольшей окружности.
Свойство 2
Площадь арбелоса равна площади круга с диаметром
Это лемма под номером 4 из Книги лемм (рис. 3) [7, 8].
Эти два свойства легко доказываются путём вычисления представленной ниже логической конструкции, состоящей из двух равенств.
Функция drawpoints отображает заданные точки красными кружками.
Рис. 3. Площадь круга диаметра
Радикальный круг
Круг на риc. 3 называется радикальным кругом арбелоса, а линия
Рис. 4. Обозначения координат, линий и окружностей, упомянутых в свойствах 3-11 и 25-26.
Свойство 3
Линии
Чтобы доказать перпендикулярность линий
Используем полученный результат для получения угла наклона прямой
Теорема 1
Уравнение касательной к левой дуге в точке
а уравнение касательной к правой дуге в точке
Функция PQ находит координаты точек касания
Помимо PQ, в данной статье встречаются так же и нижеперечисленные обозначения точек и величин: VWS, HK, U, EF, IJr и LM.
Функция dSq вычисляет квадрат расстояния между двумя заданными точками.
Свойство 4
Точки
Так как
Свойство 5
Пусть линия
Мы получаем координаты точек
Это доказывает свойство 5 путём проверки того, что расстояния от
Свойство 6
Прямая
Это эквивалентно тому, что определитель векторов
Свойство 7
Прямая
Это эквивалентно тому, что скалярное произведение векторов
Обозначим окружность с центром в
Свойство 8
Пары
Обратной точкой к точке
Так можно доказать свойство 8, подставив
Свойство 9
Исследуем окружность обратных точек
Свойство 10
Прямые
Это утверждение аналогично тому, что соответствующие дуги (то есть их касательные) перпендикулярны радикальной окружности (его касательным в точках пересечения). Согласно свойству 8, дуги являются перпендикулярными окружности с диаметром
Свойство 11
Это один из сюрпризов Бэнкоффа (Bankoff’s surprises) [12,13,14]. Если все четыре точки лежат на радикальной окружности, нам достаточно доказать, что
Представленная ниже демонстрация со слайдером (реализованным посредством функции Manipulate) иллюстрирует свойства 3-11. Самый лёгкий способ задать точки P, Q, H, K — скопировать и вставить соответствующие для них формулы.
Вписанная окружность
Теперь рассмотрим окружность, касательную к боковым дугам и верхней дуге — вписанную окружность
Рис. 5. Вписанная окружность
Шестое утверждение из Книги лемм включает так же радиус вписанной окружности, обозначаемый как
Координаты точек касания
Свойство 12
Точки
Первые два утверждения можно доказать, используя критерий определителя для проверки коллинеарности.
Пусть
Свойство 13
Точки
Представленная ниже демонстрация с Manipulate иллюстрирует свойство 13 [17]. Опция Bankoff circle покажет вписанную окружность в треугольник, который соединяет центры дуг. Это иллюстрирует свойство 23.
Свойство 14
Пусть
Данное свойство проиллюстрировано в следующей демонстрации с Manipulate и легко может быть проверена следующим выражением.
Свойство 15
Пусть
Сперва получим точки
Докажем свойство 15, сделав
Учитывая
Демонстрация с Manipulate иллюстрирует свойства 14 и 15.
Близнецы
Рассмотрим два серых круга, которые касаются радикальной оси, а так же боковые и верхние дуги на рис. 6. Они называются близнецами, или архимедовыми окружностями. В связи с нижеследующим замечательным свойством, они были хорошо изучены. Множество их необычных черт были освещены в нашем списке свойств [3, 18, 19].
Рис. 6. Близнецы.
Свойство 16
Два круга, которые касательны радикальной оси, верхней и боковым дугам арбелоса имеют одинаковый радиус.
Это свойство идёт как пятое утверждение в Книге лемм. Решая данную систему из шести уравнений, мы находим значения их радиусов, проверяем, что они равны и находим координаты их центров
Эти четыре решения дают центры, сгруппированные попарно:
Свойство 17
Площадь арбелоса равна площади наименьшего круга, который охватывает близнецов.
Рассмотрим окружность, касательную к обоим близнецам, с центром в точке
Чтобы найти экстремум для
Таким образом, центры наименьшей и наибольшей окружностей, касательных к близнецам, лежат на радикальной оси. Более того, их центры лежат в одной точке, что следует из решения данного выражения.
Таким образом, используя свойство 2, мы доказываем, что наибольшая касательная окружность, которая является самой малой из тех, что содержит близнецов, удовлетворяет свойству 17. Нижеследующая демонстрация с Manipulate показывает окружности, касательные к близнецам, при этом можно регулировать радиус
Следующий график сравнивает радиусы двух окружностей, касательных к близнецам, с центрами на радикальной оси.
Рис. 7. Обозначения точек и отрезков, которые будут фигурировать в свойствах 18-24.
Свойство 18
Общая касательная к левой дуге и близнецу (точка касания —
Так можно вычислить точки касания
Используя теорему 1, докажем оба утверждения.
Свойство 19
Длина
Докажем оба утверждения одновременно.
Однако, точки
Свойство 20
Линия
Поскольку длина отрезка
Свойство 21
Два синих круга с диаметрами на
Эти круги — четвёртый и пятый архимедовы круги, открытые Бэнкоффом [20]. Чтобы проверить это свойство, используем следующий результат [21]:
Теорема 2
Расстояние от точки
Данное ориентированное расстояние будет положительным, если треугольник
Пусть
Аналогично можно вычислить радиус синего круга справа от
Таким образом, оба круга — архимедовы, как и было сказано ранее. Следующая демонстрация с Manipulate содержит близнецов и два других круга.
Свойство 22
Окружность, проходящая через точки
Архимед открыл исходные два близнеца; Бэнкофф дополнил их третьей окружностью, открытой в 1950 году [22]. Координаты центра
Свойство 23
Окружность Бэнкоффа — вписанная в треугольник, который образован соединением центров боковых дуг и центра
Используя теорему 2 для вычисления расстояния от
Свойство 24
Окружность
Таким образом можно вычислить значения
Окружность
Свойство 25
Окружности
Свойство 26
Окружность
Окружность с центром в точке
Так как окружность проходит через
Так как окружность
Тут мы используем явные выражения для
Свойство 27
Рассмотрим два отрезка (обозначены красным), соединяющих центр верхней дуги с вершинами левой
Это свойство было обнаружено летом 1998 года [23].
Рис. 8. Две пары архимедовых окружностей из свойства 27.
Наклонные близнецы
Было показано, что есть архимедовы окружности, отличные от близнецов, а именно — окружности Бэнкоффа, которые фигурируют в свойствах 21-27. Есть так же неархимедовы близнецы — пары окружностей с одинаковым радиусом, отличным от радиуса близнецов, которые появляются в определённых областях арбелоса.
Открытие наклонных близнецов возникло из предположения о том, что помимо того, чтобы касаться боковой и верхней дуг, окружности-близнецы могут касаться друг друга, и при этом необязательно касаться радикальной оси.
Очевидно, что существует бесконечное число решений, если мы не требуем, чтобы эти окружности были одного радиуса. Идея была следующая: если мы начнём с предположения о том, что они равного радиуса, мы могли бы в результате обнаружить, что они касаются радикальной оси. Это оказалось не так. Рассмотрим окружности с центрами в точках
Эти выражения включают квадратные корни, отличающиеся знаком. Положительные корни расходятся на
Остальные — сходятся.
Подытожим: наклонные близнецы действительно равны и их общий радиус
Следующее сравнение между радиусами обычных и наклонных близнецов показывает, что они отличаются весьма незначительно.
Так можно получить координаты центров наклонных близнецов.
На представленной ниже демонстрации с Manipulate показаны наклонные близнецы и, опционально — близнецы, которые получаются при изменении параметра
Обобщения
В этом разделе мы обобщаем геометрию арбелоса, позволив дугам пересекаться и рассматривая трёхмерный вариант. Чтобы задать контекст первого из обобщений, введём понятие радикальной оси для двух окружностей.
Радикальные оси
Пусть
Вот очень интересное свойство степени точки. Пусть даны окружность и некоторая точка
В приведенной ниже демонстрации с Manipulate имеется четыре локатора для изменения размеров окружности, положения
Пусть даны две окружности с центрами в разных точках. Их радикальные оси определяются как прямые, содержащие все точки, которые имеют одинаковые степени по отношению к каждой из окружностей. Доказательство данного утверждения можно найти в [10].
Теорема 3
Если две окружности пересекаются в точках
Следствие 1
Пусть даны три окружности с центрами, не лежащими на одной прямой. Тогда их радикальные оси будут попарно параллельны и не будут совпадать.
Теорема 4
Радикальная ось двух окружностей есть геометрическое место точек, из которых проведенные к ним касательные имеют одинаковую длину.
Представленная ниже демонстрация с Manipulate показывает две окружности; одна закреплена, а размер и центр другой окружности можно изменять, перемещая локатор и меняя положение слайдера, который отвечает за радиус. Можно использовать другой слайдер для изменения положения красной точки на радикальной оси чтобы проиллюстрировать теорему 4.
Пересечение двумерного и трехмерного арбелосов
В данной демонстрации показаны два обобщения.
Свойство 28
Вписанные окружности касаются радикальной оси боковых и верхней дуг, и каждая из дуг в обобщённом арбелосе имеет одинаковый радиус.
Пусть
Теорема 5
Если окружности
Воспользовавшись данной теоремой, вычислим значение
Не теряя обобщённости, можем предположить, что
Тогда, хоть некоторыми центрами можно и пренебречь, но радиус будет одинаков в любом случае.
Доказательство без слов
Собственно, вот еще три свойства арбелоса. Посмотрим, сможете ли Вы догадаться, какие где свойства задействованы, экспериментируя с элементами управления [24,25].
Первый Manipulate позволяет передвигать боковые дуги.
Второй Manipulate позволяет вращать прямую вокруг точки касания боковых дуг.
Наконец, третий Manipulate показывает бесконечное семейство близнецов.
Список литературы
[1] F. van Lamoen. “Online Catalogue of Archimedean Circles.” (Jan 22, 2014) home.planet.nl/~lamoen/wiskunde/arbelos/Catalogue.htm.
[2] S. Garcia Diethelm. “Planar Stress Rotation” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/PlanarStressRotation.
[3] C. W. Dodge, T. Schoch, P. Y. Woo, and P. Yiu, “Those Ubiquitous Archimedean Circles,” Mathematical Magazine, 72(3), 1999 pp. 202-213. www.jstor.org/stable/2690883.
[4] H. P. Boas, “Reflection on the Arbelos,” American Mathematical Monthly, 113(3), 2006 pp. 236-249.
[5] H. D. Dörrie, 100 Great Problems of Elementary Mathematics: Their History and Solution (D. Antin, trans.), New York: Dover Publications, 1965.
[6] J. Rangel-Mondragón. “Recursive Exercises II: A Paradox” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/RecursiveExercisesIIAParadox.
[7] R. B. Nelsen, “Proof without Words: The Area of an Arbelos,” Mathematics Magazine, 75(2), 2002 p. 144.
[8] A. Gadalla. “Area of the Arbelos” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/AreaOfTheArbelos.
[9] J. Rangel-Mondragón, “Selected Themes in Computational Non-Euclidean Geometry. Part 1. Basic Properties of Inversive Geometry,” The Mathematica Journal, 2013. www.mathematica-journal.com/2013/07/selected-themes-in-computational-non-euclidean-geometry-part-1.
[10] D. Pedoe, Geometry: A Comprehensive Course, New York: Dover, 1970.
[11] M. Schreiber. “Orthogonal Circle Inversion” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/OrthogonalCircleInversion.
[12] M. G. Welch, “The Arbelos,” Master’s thesis, Department of Mathematics, University of Kansas, 1949.
[13] L. Bankoff, “The Marvelous Arbelos,” The Lighter Side of Mathematics (R. K. Guy and R. E. Woodrow, eds.), Washington, DC: Mathematical Association of America, 1994.
[14] G. L. Alexanderson, “A Conversation with Leon Bankoff,” The College Mathematics Journal, 23(2),1992 pp. 98-117.
[15] S. Kabai. “Tangent Circle and Arbelos” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/TangentCircleAndArbelos.
[16] G. Markowsky and C. Wolfram. “Theorem of the Owl’s Eyes” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/TheoremOfTheOwlsEyes.
[17] P. Y. Woo, “Simple Constructions of the Incircle of an Arbelos,” Forum Geometricorum, 1, 2001 pp. 133-136. forumgeom.fau.edu/FG2001volume1/FG200119.pdf.
[18] B. Alpert. “Archimedes’ Twin Circles in an Arbelos” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/ArchimedesTwinCirclesInAnArbelos.
[19] J. Rangel-Mondragón. “Twins of Arbelos and Circles of a Triangle” from the Wolfram Demonstrations Project—A Wolfram Web Resource. demonstrations.wolfram.com/TwinsOfArbelosAndCirclesOfATriangle.
[20] H. Okumura, “More on Twin Circles of the Skewed Arbelos,” Forum Geometricorum, 11, 2011 pp. 139-144. forumgeom.fau.edu/FG2011volume11/FG201114.pdf.
[21] E. W. Weisstein. “Point-Line Distance—2-Dimensional” from Wolfram MathWorld—A Wolfram Web Resource. mathworld.wolfram.com/Point-LineDistance2-Dimensional.html.
[22] L. Bankoff, “Are the Twin Circles of Archimedes Really Twins?,” Mathematics Magazine, 47(4), 1974 pp. 214-218.
[23] F. Power, “Some More Archimedean Circles in the Arbelos,” Forum Geometricorum, 5, 2005 pp. 133-134. forumgeom.fau.edu/FG2005volume5/FG200517.pdf.
[24] A. V. Akopyan, Geometry in Figures, CreateSpace Independent Publishing Platform, 2011.
[25] H. Okumura and M. Watanabe, “Characterizations of an Infinite Set of Archimedean Circles,” Forum Geometricorum, 7, 2007 pp. 121-123. forumgeom.fau.edu/FG2007volume7/FG200716.pdf.