Вместо скучного вступления
В прошлый раз я пытался вкратце объяснить основные принципы работы операционных усилителей. Но я просто не могу отказать в просьбе о продолжении темы. На этот раз схемы немного сложнее, но постараюсь не растягивать нудные математические выводы.
Интеграторы и дифференциаторы
Представьте, что Вам приходится считать интеграл напряжения.
Так вот, для этих целей как раз и нужен интегратор.
В общем случае (для идеального операционника) рассматривается этот вариант:

Далее, настоятельно рекомендую немного поднапрячься и вспомнить немного курс физики и высшей математики. Хотя, это и не совсем обязательно.
Помните формулу заряда конденсатора?

Учитывая, что заряд будет изменяться по времени, можем смело предположить:

Далее… Неинвертирующий вход подключен на «землю». Напряжение на конденсаторе равняется противоположному напряжению на выходе, другими словами


Далее, решая и интегрируя, получаем (почти) финальную формулу:

Это, так сказать, в общем виде. В итоге, хочу обратить внимание на то, что напряжение на выходе играет существенную роль для каждого момента времени t. Его мы возьмем как свободный элемент:

Логично предположить, что интеграция идет по времени от t0 до t1
Вот Вам задачка. Конденсатор разряжен. Выходное напряжение равно нулю. Схема выключена. Конденсатор имеет емкость 1мкФ. Резистор 30кОм. Входное напряжение сначала равно -2В, затем 2В. Полярность меняется каждую секунду. Иными словами, на вход мы подали генератор импульсов.
Итак, решаем. Собираем быстренько схему в Протеусе. Рисуем график. Заносим в качестве функций входное и выходное напряжения. Нажимаем «Симулировать график». Получаем:

Вышел «пилообразный» сигнал. Обращаем внимание, что конденсатор влияет на резкость спада. Он должен колебаться в разумных пределах, чтоб успевать заряжаться/разряжаться, и чтоб не разряжаться/разряжаться* слишком быстро. Кстати, логично будет предположить, что сигнал усиливается в пределах питания нашего ОУ.
Далее, перейдем к дифференциаторам.
Тут не сложнее, чем в интеграторах.
Дифференциатор:

А вот и формула аналогового вычисления:

И снова скучные формулы…
Ток через конденсатор равен

Раз операционный усилитель близок к идеальному, то можно предположить, что ток через конденсатор равен току через резистор.


Как и в предыдущем примере, рассмотрим более практический пример. Конденсатор емкостью 50мкФ. Резистор 30кОм. На вход подаем «пилу». (Честно говоря, в протеусе не получилось сделать пилу стандартными средствами, пришлось прибегнуть к инструменту Pwlin.
Как результат, получаем график:

Подведем итоги.
Интегратор. «Прямоугольник» -> «Пила»
Дифференциатор. «Пила» -> «Прямоугольник»
P.S. Дифференциаторы и интеграторы будут рассмотрены позже в совершенно ином обличии.
Компараторы
Компаратор — это такое устройство, которое сравнивает два входных напряжения. Состояние на выходе меняется скачкообразно в зависимости от того, какое напряжение больше. Тут нет ничего особенного, просто приведу пример. На первый вход подаем постоянное напряжение, равное 3В. На второй вход — синусоидальный сигнал с амплитудой 4В. Снимаем напряжение с выхода.

График содержит исчерпывающую информацию, которая не нуждается в комментариях:

Логарифмический и экспоненциальный усилители
Для получения логарифмической характеристики необходим элемент ею обладающий. Для таких целей вполне подходит диод или транзистор. Дабы не усложнять, далее будем использовать диод.
Для начала, как обычно, приведу схему…

… и формулу:

Обращаем внимание, что е — это заряд электрона, Т — температура в Кельвинах и k — постоянная Больцмана.
Снова придется вспомнить курс физики. Ток через полупроводниковый диод можно описать как:

Тут U — напряжение на диоде. I0 — ток утечки при малом обратном смещении. Прологарифмируем и получим:

Отсюда получаем напряжение на диоде (которое идентично напряжению на выходе):

Стоит сделать заметку, что при температуре 20 градусов Цельсия:

Проверим, как работает эта схема графически. Запустим протеус. Настроим входной сигнал:

Ток на диоде будет изменятся следующим образом:

Напряжение на выходе изменяется по логарифмическому закону:

Следующий пункт — экспоненциальный усилитель я оставлю без комментариев. Надеюсь, тут все будет понятно.




Вместо заключения
В этой части я старался свести математические выводы к минимуму, а сделать упор на практическое применение. Надеюсь, Вам понравилось :-)
*UPD.: Время заряда/разряда конденсатора определяется как:



