
Астрологи объявили на хабре неделю профанных доказательств великих теорем.
- Теорема о четырёх красках.
- Теорема Ферма.
- Перед вами «доказательство гипотезы Римана».
Сначала я хотел тоже, оформить статью по приколу, что типа автор полностью уверен, что всё доказал, где мои деньги, но у меня, похоже, нет такого запаса самоиронии. Так что, обманываться вам придётся сознательно. А ещё, статья же для плюсов пишется, а не для минусов. Так что, вспоминаем о существовании юмора и продолжаем читать.
Итак, сначала по-быстрому (и не по-настоящему) докажем потрясающее очень хорошо сбалансированное равенство
С детского сада всем известно, что сумма геометрической прогрессии равна

Значит
Если
Вот так забудешь поставить где надо различный знак и всё — сумма уже не нулевая, всё доказательство насмарку. Такое чувство, что при
Ладно, при нуле, может, и нет. Но при остальных значениях точно ноль. Поэтому даже верен интеграл
На этом, кстати, работает преобразование Фурье — интеграл имеет не нулевое значение только если частотная составляющая и колебательный множитель в показателе экспоненты под интегралом гасят друг друга в ноль.
Теперь надо вспомнить про дзета-функцию.
После замены переменных наша дзета-функция выглядит как приготовленная для разделки жареная курочка:

Ах да, надо ещё с тривиальными нулями что-то порешать. А то они внаглую идут только по чётным целым отрицательным числам, а у нас дробь
Но сам Риман сразу при открытии этой функции сказал: да [разве нужны нам]ер эти нули, вместе с полюсом. Берём, умножаем на всё что под руку попадётся.
Так что, составим соответствующее равенство, верное при таких нулях.
«Новые» нули функции именно это и обязаны делать. Конечно, если интеграл ноль, без разницы, что там за конечный множитель перед ним. Но и убирать этот множитель не надо, он должен помочь найти такое место, ведь прежде чем обнулиться функция должна потихонечку симметричненько уронить логарифм своего значения.
Смотря на это равенство, можно начать сомневаться, что и осевые нули бывают. Но нет — доказано, на оси нулей столько, что забирай — не закончатся. А вот то что не при любом
А ещё, может ли выполняться это равенство при не нулевых значениях интеграла? Мнимая часть точно должна быть нулевой, ведь она меняет знак. А реальная? Ну вот, даже прямое уравнение и то с подвохом — при нулевом

График с выделением линий нулевых мнимых значений кси-функции, пересечения не совпадают, а чередуются с нулями дзета-функции.
Будет, конечно прикол, если «новый» ноль окажется не на этой линии. Он, конечно, может быть на линии, но я же не проверял, что только на ней. У кси-функции линии нулевой реальной части и линии нулевой мнимой части чередуются, но ещё по оси идёт линия нулевой мнимой части. Так что, если пересечения отходящих в сторону от оси линий не будет, новых нулей не ожидается.
***
Немного объясню прикол с нулевой суммой из начала статьи, а то может быть не понятно. Дело в том, что сумма всех натуральных степеней одного числа сходится только если число меньше единицы. Для комплексных чисел сравнение превращается из больше/меньше в направление изменения значения (меня до сих пор удивляет, почему для математиков было открытием, что кроме вперёд/назад можно ходить и вправо/влево, и ещё разворачиваться в любом направлении). Для схождения модуль числа должен быть меньше единицы. Если число равно единице, то для суммы слагаемые аналогичны нулевой степени натурального основания, и сходиться такая сумма из бесконечности единиц точно не будет. А если модуль больше единицы, то тем более.
Если модуль равен единице, но фаза отличается, то сумма превращается в постоянное кружение вокруг одной точки, и вопрос спорный — эта точка как-то относится к тому, что должно получиться, или нет? А если добавить такое кружение с противоположной фазой, и значит, в другую сторону? Общее значение будет реальным и равным единице — за счёт того, что первый шаг — в котором фаза ещё не проявлена — дублируется. Но имеет ли такая сумма отношение к понятию суммы, и можно ли расширить нулевое значения сложения этих сумм для всех комплексных степеней? Условно, очень условно. Если говорить точно, то нет. Но если в аналитическом смысле, то совсем же другое дело.
Только, аналитика тоже может быть неожиданной. Например. Преобразование Фурье можно было бы считать суммой из двух различных преобразований Лапласа. Преобразование Лапласа — это интеграл, в котором множитель состоит из натурального основания в степени минус параметра — как преобразование Фурье, только без мнимого множителя, и с уменьшенным вдвое диапазоном интегрирования. Для комплексной функции колебания с одной частотой преобразование будет давать
Кроме того, ограничение на преобразование Лапласа определяют только одно из этих двух слагаемых — это максимум, другое при тех же параметрах не сходится. Так что, это тоже условно. Но условность интересная. Преобразование Фурье-то здесь равно дельта-функции не условно.
Второе слагаемое в особенной функции, конечно, подозрительное. С другой стороны, именно это слагаемое балансирует интеграл при определении нетривиальных нулей дзета-функции. И здесь, похоже, тоже балансирует.
Так что же за этим всем стоит? Если порассуждать: первое слагаемое понятное, второе слагаемое подозрительное, третье слагаемое не участвует в интеграле. И возникает по этому поводу такая мысль. А что, если существует и четвёртое слагаемое, только оно на столько странное, что даже не проявляется? Или, наоборот, всё доказательство сводится к тому, что такого слагаемого нет? Как доказать, что чего-то нет, если его нет? А, ну да, у нас тут гипотеза Римана, был бы наглядный пример.
Рассмотрим подробнее преобразование Фурье. Если задать функцию затухающего колебания
Если ограничить диапазон интегрирования, точнее, обнулить функцию для
Ещё один промежуточный вариант, симметричный:
Эта статья ничем не заканчивается. Пойду чай попью.