Как стать автором
Обновить
137.67
Skillfactory
Учим работать в IT на курсах и в магистратурах

Пандемия данных. Почему в будущем медицина будет всё больше основываться на данных?

Время на прочтение7 мин
Количество просмотров3.3K

Методы работы с большими данными всё активнее применяются в медицинской сфере: биоинженерии, биостатистике и биоинформатике, медицинской физике и аналитике. Вместе с экспертами онлайн-магистратуры МФТИ «Прикладной анализ данных в медицинской сфере» разбираемся, как Data Science интегрирует медицину будущего в практики настоящего.


Почему данные становятся всё важнее для медицины?

Пандемия коронавируса ускорила развитие биотехнологий и всей медицинской сферы. Специалисты в области Data Science помогают сделать исследования эффективнее, диагностику — быстрее, а методы лечения — действеннее. Машинное обучение и анализ данных в медицине позволяют создавать хранилища данных и сервисы, обновлять и оптимизировать инфраструктуру реестров, заниматься передовыми исследованиями в областях доказательной медицины, фармацевтики и фармакологии. 

Благодаря работе аналитиков данных разработка новых лекарств становится дешевле и быстрее, постановка диагноза — точнее, а рекомендации по лечению — более индивидуализированными, в соответствии с особенностями каждого пациента. Это подчёркивает Эмиль Магеррамов, руководитель группы вычислительной химии в компании BIOCAD и академический руководитель онлайн-магистратуры «Прикладной анализ данных в медицинской сфере». Он объясняет, что в дальнейшем медицина будет становиться персонализированной:

«С одной стороны, разрабатываются препараты, действие которых должно быть одинаково эффективным для всех людей. С другой стороны, с помощью данных мы можем принимать во внимание индивидуальные отличия организма, анализировать данные о конкретном человеке и дорабатывать лекарства или методы именно под этого пациента. Так, благодаря данным у медицины есть все шансы стать персонализированной в ближайшем будущем».

Помимо этого, по мнению эксперта, из-за того, что в теле человека существует множество механизмов, работу которых учёные и врачи пока не до конца понимают, клинические испытания лекарств и методик сперва проводятся на животных, а затем — на специальных фокус-группах. Чтобы двигаться в сторону более глубокого понимания внутренних механизмов работы тела человека, необходимо собирать больше данных. Чтобы эти данные анализировать, в биомедицинской сфере нужны специалисты по Data Science.

Согласен с Эмилем и Станислав Отставнов, заведующий лабораторией анализа показателей здоровья населения и цифровизации здравоохранения Физтех-школы биологической и медицинской физики МФТИ и также академический руководитель онлайн-магистратуры «Прикладной анализ данных в медицинской сфере». Он подчёркивает, что главным мерилом внедрения любых изменений в здравоохранение является повышение продолжительности жизни человека. Он обращает внимание на то, как по мере развития человечества совершенствовались и способы борьбы за долголетие. Если в Средневековье для существенного прорыва было достаточно улучшить санитарно-эпидемиологическую обстановку и организовать водопровод, то дальше для серьёзных изменений требовались уже фундаментальные научные открытия: появление рентгена, изобретение антибиотиков, расшифровка генома.

«Если посмотреть на график зависимости ожидаемой продолжительности жизни от расходов на здравоохранение, проявятся две ключевые вещи. Не все государства тратят ресурсы на исследования эффективно. Каждое отвоёванное мгновение жизни обходится всё дороже и дороже. Деньги — не единственный необходимый ресурс, но инвестировать их и другие ресурсы наиболее рационально помогают сбор и анализ всей возможной информации».

Предсказываемые изменения в R&D-отделах биофармацевтических компаний
Предсказываемые изменения в R&D-отделах биофармацевтических компаний

Найти злокачественную опухоль на фото и применить ИИ в здравоохранении: как большие данные совершенствуют медицину

Примеров успешного применения больших данных в медицине уже достаточно, чтобы сделать вывод об эффективности обращения к ним. По данным экспертов компании SAS, инструменты Data Science помогают бороться с «обезличенным здравоохранением», когда стандартизация методов лечения приводит к снижению их результативности. Например, самые популярные препараты, включённые в американскую медстраховку Medicare, помогают всего 21% пациентов. 

Анализ и обработка информации помогают нивелировать подобные ошибки медицины. Компания Express Scripts ежегодно анализирует миллионы выдаваемых в аптеках рецептов на препараты. В перспективе это приведёт к тому, что медперсонал будет знать о возможных побочных эффектах от лекарства ещё до того, как выписать его пациенту. 

Эмиль Магеррамов приводит ещё несколько примеров, когда данные в медицине, а точнее, применение Machine Learning в той или иной форме, помогали в разработках и исследованиях. В одном из таких проектов он лично принимал участие.

«Существует приложение, которое по фотографии способно отличить меланому от родинки. Меланома — это злокачественное поражение кожи, которое требует срочного лечения, его нельзя игнорировать. Довольно часто меланомы маскируются под обычные родинки. Чтобы создать алгоритм, отличающий их по фотографии, потребовалось собрать большое количество данных: фото родинок и меланом. Во время работы над проектом мы с командой создали рабочий алгоритм, позволив методам машинного обучения научиться искать скрытые закономерности».

Кроме того, существуют стартапы, которые занимаются анализом крови и состава микробиоты человека. По результатам анализа подбирается персональная диета, учитывающая уникальные особенности каждого пользователя.

Станислав Отставнов в качестве иллюстрации о важности использования данных в медицине вспоминает кейс талидомида, заложившего основы современных фармаконадзора и доказательной медицины. Талидомид — популярный в 1960-е годы препарат, который впоследствии становился причиной развития периферического неврита и инвалидности у младенцев. Одна из экспертов Управления по продуктам и лекарствам США обратила внимание, что данных о побочных эффектах препарата недостаточно. Это позволило не допустить регистрации талидомида в Америке и спасло жизни многих пациентов.

«Это один из самых важных кейсов применения реальных данных в целях принятия правильных управленческих решений», — подчёркивает эксперт. 

Ещё один релевантный пример, особенно близкий жителям Москвы, — эксперимент по внедрению технологий ИИ в сфере здравоохранения в столице. В систему ЕМИАС интегрируется алгоритм, который анализирует результаты КТ, маммографии, флюорографии и других лучевых исследований, ускоряя постановку предварительного диагноза.

«Для такой консервативной сферы это реально прорывная история, которая в чём-то нас делает лидерами. Главная объективная ценность — это человеческая жизнь, и я рад, что искусственный интеллект позволяет её сохранять».

Принцип работы алгоритма ИИ, внедрённого в систему ЕМИАС
Принцип работы алгоритма ИИ, внедрённого в систему ЕМИАС

Как в будущем работа с данными повлияет на медицину?

Международная консалтинговая компания Deloitte в аналитическом исследовании выделяет несколько трендов, которые будут характерны для медицины будущего. Большую роль в большинстве из них играют данные. Медико-технологические компании станут лидерами всей биомединдустрии, а разработка софта, способного анализировать медицинские данные, станет приоритетной задачей. Big Data захватят R&D-департаменты, а достижения в сфере искусственного интеллекта, нанотехнологий, биоинформатики помогут существенно улучшить клиническую диагностику многих заболеваний. 

Эмиль Магеррамов считает, что благодаря данным в будущем диагностика заболеваний существенно ускорится:

«Сейчас сообщество дата-сайентистов активно занимается созданием алгоритмов, способных диагностировать опухоли, анализируя результаты МРТ, КТ и рентгеновских снимков. Это делается не чтобы лишить врачей работы, но чтобы предоставить им больше информации. Подобные системы ассистирования позволят специалистам быстрее и точнее определять диагноз и минимизируют фактор ошибки».

Станислав Отставнов предполагает, что в будущем медицину ждёт появление радиомики, транскриптомики и ассистентов с ИИ в клинической практике. Радиомика подразумевает повсеместное внедрение во врачебную практику анализа изображений результатов лучевых исследований. Транскриптомика поможет узнать больше про активность клеточных процессов.

«Этот прогноз банален и в то же время слишком очевиден, чтоб стать правдой, ведь по пути в это светлое будущее предстоит обойти или сломать множество барьеров, как правило, отнюдь не связанных с наукой». 

Появление персонализированной медицины и индивидуального подхода к лечению пациентов произойдёт совсем скоро и позволит существенно повысить эффективность лечения и профилактики.

«Лекарственные препараты, одобренные самыми строгими регуляторами, в принципе не могут не работать, а значит, если они где-то не работают, причина — в неких дополнительных условиях. Данные помогут научиться их выявлять», — считает Станислав.

Обзор будущих трендов в биомединдустрии от Deloitte
Обзор будущих трендов в биомединдустрии от Deloitte

Чем специалист по Data Science в биомеде отличается от обычного дата-сайентиста?

Эмиль Магеррамов считает, что базовые знания дата-сайентиста в медицинской сфере не отличаются от базовых знаний обычного дата-сайентиста, хотя на более углублённой стадии изучения специалисты в биомеде переходят к более специфическим вещам: молекулярной биологии, методам работы с особыми базами медицинских данных. 

«В рамках совместной онлайн-магистратуры SkillFactory и МФТИ «Прикладной анализ данных в медицинской сфере» студенты могут выбрать разные специальности, например сфокусироваться на генетических исследованиях или молекулярной биологии и биоинформатике. Эти отрасли тоже подразумевают знание навыков Data Science, но студенты не всегда обязаны работать с моделями машинного обучения — есть и другие методы исследований, например анализ ДНК-последовательностей».

Эксперт подчёркивает, что IT-специалисты в биомеде тесно работают с анализом медицинских изображений, а в них присутствует своя специфика: сканы томографий трёхмерные и имеют определённый формат, не похожий на стандартный jpeg. Такой дата-сайентист должен быть знаком с особыми архитектурами нейросетей для работы с такими данными и особыми алгоритмами и программами. 

Во время обучения в онлайн-магистратуре SkillFactory и МФТИ «Прикладной анализ данных в медицинской сфере» студенты научатся работать с массивами данных и на их основе разрабатывать инновационные медицинские решения. Применение методов Data Science в персонализированной медицине, анализе изображений, биоинформатике и генетике улучшает диагностику заболеваний и делает лечение более эффективным. После окончания обучения студенты смогут работать в лабораториях биомедицинских исследований, R&D-отделах healthtech-компаний, сфере биомедицинского моделирования и вычислительной биомедицины.

Теги:
Хабы:
Всего голосов 6: ↑4 и ↓2+2
Комментарии13

Публикации

Информация

Сайт
www.skillfactory.ru
Дата регистрации
Дата основания
Численность
501–1 000 человек
Местоположение
Россия
Представитель
Skillfactory School