Как стать автором
Поиск
Написать публикацию
Обновить
752.22

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Определяем ключевые товары с помощью линейной регрессии

Время на прочтение6 мин
Количество просмотров11K
Ритейл, все-таки, штука интересная. Особенно, если разрабатываешь сервис для его аналитики. Каждый поход в магазин превращается в мини-исследование. Идешь себе вдоль полок и думаешь:
“С чем лучше сосиски коррелируются с кетчупом или мариноваными огурцами? А черт, ладно, беру и то, и то!”
“Hoegaarden почти раскупили, а ведь до вечера пятницы еще целых полдня. Эх, че ж так плохо спрос то спрогнозировали? ”

Интересно, а что применяют управляющие для прогнозирования продаж?

А иногда приходишь с этим вопросом к ритейлерам, а тебе в ответ люди говорят «Нууууу, обычно как-то так ...» и начинают делать широкие жесты руками. Да вот, приблизительно, такие, как на картинке.

image


Так вот, мы в Datawiz.io, решительно не согласны с таким подходом.
Читать дальше →

Применяем корреляцию в ритейле

Время на прочтение5 мин
Количество просмотров15K
На данный момент система высшего образования свела математику до одноразового применения — сломать мозг студентов младших курсов непрофильных специальностей и благополучно выветрится к следующей сессии. Некоторые, правда, потом еще помнят что такие науки как математика и статистика это реальная сила, но мало кто это понимает и тем более применяет в своей деятельности.

В Datawiz.io, собрав несколько мат-гиков, мы решили попытаться изменить сложившуюся ситуацию. Интересно же использовать свои знания на чем-то реальном, измеримом, и даже, возможно, приносящем пользу обществу. Остановились мы на ритейл индустрии. Ритейл предлагает множество данных для обработки, просто водопад цифр: продажи, чеки, ценообразование, покупатели, программы лояльности,… Есть с чем порезвится.
image

Читать дальше →

Введение в машинное обучение с помощью scikit-learn (перевод документации)

Время на прочтение6 мин
Количество просмотров99K
Данная статья представляет собой перевод введения в машинное обучение, представленное на официальном сайте scikit-learn.

В этой части мы поговорим о терминах машинного обучения, которые мы используем для работы с scikit-learn, и приведем простой пример обучения.

Машинное обучение: постановка вопроса


В общем, задача машинного обучения сводится к получению набора выборок данных и, в последствии, к попыткам предсказать свойства неизвестных данных. Если каждый набор данных — это не одиночное число, а например, многомерная сущность (multi-dimensional entry или multivariate data), то он должен иметь несколько признаков или фич.

Машинное обчение можно разделить на несколько больших категорий:
  • обучение с учителем (или управляемое обучение). Здесь данные представлены вместе с дополнительными признаками, которые мы хотим предсказать. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение с учителем). Это может быть любая из следующих задач:

  1. классификация: выборки данных принадлежат к двум или более классам и мы хотим научиться на уже размеченных данных предсказывать класс неразмеченной выборки. Примером задачи классификации может стать распознавание рукописных чисел, цель которого — присвоить каждому входному набору данных одну из конечного числа дискретных категорий. Другой способ понимания классификации — это понимание ее в качестве дискретной (как противоположность непрерывной) формы управляемого обучения, где у нас есть ограниченное количество категорий, предоставленных для N выборок; и мы пытаемся их пометить правильной категорией или классом.
  2. регрессионный анализ: если желаемый выходной результат состоит из одного или более непрерывных переменных, тогда мы сталкиваемся с регрессионным анализом. Примером решения такой задачи может служить предсказание длинны лосося как результата функции от его возраста и веса.


  • обучение без учителя (или самообучение). В данном случае обучающая выборка состоит из набора входных данных Х без каких-либо соответствующих им значений. Целью подобных задач может быть определение групп схожих элементов внутри данных. Это называется кластеризацией или кластерным анализом. Также задачей может быть установление распределения данных внутри пространства входов, называемое густотой ожидания (density estimation). Или это может быть выделение данных из высоко размерного пространства в двумерное или трехмерное с целью визуализации данных. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение без учителя).

Читать дальше →

Введение в machine learning: с чего начать изучение и как применять

Время на прочтение1 мин
Количество просмотров30K
image
Машинное обучение — это математическая дисциплина, изучающая алгоритмы способные выделять знания из данных. Несмотря на то, что эта дисциплина в основном теоретическая, в жизни большинства людей она с каждым годом играет все большую и большую роль. Так, сложно сейчас встретить человека, который бы ничего не слышал о торговых роботах, Яндексе, Google Street View, Siri.

В докладе коллеги Алексадра Сенова из проекта Synqera для очередного нашего технического i-Free meet-up проведен небольшой экскурс в машинное обучение. Из него мы узнаем чуть больше про области применения, рассмотрим основные задачи, возникающие в рамках машинного обучения, а так же алгоритмы их решения. Уделим внимание проблемам, возникающим при их применении, приведем пару примеров и рекоммендаций по дальнейшему изучению.

Подробности

Как узнать год выпуска песни по набору аудио характеристик?

Время на прочтение10 мин
Количество просмотров12K
Недавно завершился курс Scalable Machine Learning по Apache Spark, рассказывающий о применении библиотеки MLlib для машинного обучения. Курс состоял из видеолекций и практических заданий. Лабораторные работы необходимо было выполнять на PySpark, а поскольку по работе мне чаще приходится сталкиваться со scala, я решил перерешать основные лабы на этом языке, а заодно и лучше усвоить материал. Больших отличий конечно же нет, в основном, это то, что PySpark активно использует NumPy, а в версии со scala используется Breeze.

Первые два практических занятия охватывали изучение основных операций линейной алгебры в NumPy и знакомство с apache spark соответственно. Собственно машинное обучение началось с третьей лабораторной работы, она и разобрана ниже.
Ну что же, поехали!

Вероятностное программирование

Время на прочтение19 мин
Количество просмотров42K
Вероятностное моделирование является одним из мощнейших инструментов для специалиста по анализу данных. К сожалению, для его использования необходимо не только уверенно владеть аппаратом теории вероятностей и математической статистики, но и знать детали работы алгоритмов приближенного байесовского вывода, что делает порог вхождения очень высоким. Из этой лекции вы узнаете о сравнительно молодой парадигме в машинном обучении — вероятностном программировании. Его задача — сделать всю мощь вероятностного моделирования доступной любому человеку, имеющему опыт программирования и минимальный опыт анализа данных.



Лекция была прочитана Борисом hr0nix Янгелем на факультете компьютерных наук, открытом в Высшей школе экономики при поддержке Яндекса. Сам Борис окончил ВМиК МГУ и Школу анализа данных Яндекса. Работал в Microsoft Research Cambridge в группе Кристофера Бишопа над фреймворком Infer.NET. Сейчас Борис — ведущий разработчик поиска Яндекса.

Под катом — расшифровка рассказа.
Читать дальше →

Создаем комнатный детектор движения на Arduino и MATLAB

Время на прочтение7 мин
Количество просмотров28K

В этом примере будет создан простой детектор движения, на базе фоторезистора и Arduino. Управляется при помощи Arduino Support Package для MATLAB.


Читать дальше →

Формирование музыкальных предпочтений у нейронной сети — эксперимент по созданию умного плеера

Время на прочтение7 мин
Количество просмотров37K
Данная статья посвящена работе по исследованию возможности обучить простейшую (относительно) нейронную сеть «слушать» музыку и отличать «хорошую» по мнению слушателя от «плохой».

Цель


Научить нейронную сеть отличать «плохую» музыку от «хорошей» или показать, что нейронная сеть на это неспособна (данная конкретная ее реализация).

image
Читать дальше →

Типы личности по MBTI: влияние на восприятие рекламы

Время на прочтение5 мин
Количество просмотров43K
Привет Хабр! Анализируя пользовательские данные для нужд маркетинга и рекламы, мы решили исследовать влияние типа личности пользователя на то, как он реагирует на рекламное объявление. За основу решили взять, пожалуй, самую популярную типологию линостей MBTI (Myers-Briggs Type Indicator), известную еще с середины 20-го века. Многие крупные западные компании используют тесты MBTI при найме или при формировании команды для работы над проектами.

Но нас интересует, конечно, не готовность пользователя к командной работе, а влияние его типа личности на желание кликнуть по баннеру. Поэтому вопрос, который мы исследовали звучит так: «Могут ли типы личности влиять на CTR в рекламных кампаниях?»

В этой статье я расскажу о том как мы это делали.


Читать дальше →

Первый опыт участия в kaggle-конкурсе и работа над ошибками

Время на прочтение5 мин
Количество просмотров15K
Хочу поделиться опытом своего первого участия в kaggle конкурсе (учебный Bag of Words). И хотя мне не удалось достичь поражающих воображение результатов, я расскажу о том, как искала и находила способы улучшить примеры “учебника” (для этого сами примеры тоже кратко опишу), а также остановлю внимание на разборе своих просчетов. Должна предупредить, что статья будет интересна прежде всего новичкам в области text mining. Тем не менее, большинство методов я описываю кратко и упрощенно, давая при этом ссылки на более точные определения, поскольку цель моя — обзор практики, а не теории. К сожалению, конкурс уже завершился, но прочитать материалы к нему все равно может быть полезно. Ссылка на код к статье тут.
Читать дальше →

Алгоритмы разума

Время на прочтение5 мин
Количество просмотров22K
Наука всегда сопровождает технологию, изобретения дают нам новую пищу для размышлений и создают новые явления, которые еще предстоит объяснить.

Так говорит Арам Харроу (Aram Harrow), профессор физики Массачуссетского технологического в своей статье «Почему сейчас самое подходящее время для изучения квантовых вычислений».

Он считает, что с научной точки зрения энтропия не могла быть полностью изученной, пока технология парового двигателя не дала толчок к развитию термодинамики. Квантовые вычисления появились из-за потребности имитировать квантовую механику на компьютере. Так и алгоритмы человеческого разума могут быть изучены с появлением нейронных сетей. Энтропия используется во многих областях: например, при смарт кропе, в кодировании видео и изображений; в статистике.

image
Читать дальше →

Автоматическое определение тональности текста (Sentiment Analysis)

Время на прочтение7 мин
Количество просмотров58K
За недолгое время моего процесса обучения я понял одну вещь – знаниями нужно делиться. Осознал я это давно, но лень перебороть и найти время не всегда получается.

Речь в этой статье пойдет про использование различных методов машинного обучения для решения проблем, связанных с обработкой естественного языка (NLP). Одной из таких проблем является автоматическое определение эмоциональной окраски (позитивный, негативный, нейтральный) текстовых данных, то есть анализа тональности (sentiment analysis). Цель этой задачи состоит в определении, является ли данный текст (допустим обзор фильма или комментарии) положительным, отрицательным или нейтральным по своему влиянию на репутацию конкретного объекта. Трудность анализа тональности заключается в присутствии эмоционально обогащенного языка — сленг, многозначность, неопределенность, сарказм, все эти факторы вводят в заблуждение не только людей, но и компьютеров.



На хабре уже не раз появлялись статьи связанные с определением тональности 1, 2, 3. Да и вообще, эта тема является одной из самых обсуждаемых во всем мире в последнее время [1, 2, 3, 4].

Сразу обговорю, что в этой статье особо никаких новшеств вы не найдете, данный материал скорее всего может послужит туториалом для новичков в сфере машинного обучения и NLP, коим я и являюсь. Основной же материал, который я использовал вы можете найти по этой ссылке. Весь исходный код вы можете найти по этой ссылке.

Итак, в чем же состоит проблема и как ее решить?
Читать дальше →

Материалы Третьей конференции «Технологии Wolfram» (СПбГЭУ, 2015)

Время на прочтение6 мин
Количество просмотров5.5K

9 июня 2015 года в Санкт-Петербургском государственном экономическом университете (СПбГЭУ) прошла Третья конференция «Технологии Wolfram», которую посетило более 250 человек. Мы рады представить вам ее материалы: это большое количество записей выступлений докладчиков, а также их презентации, которые вы можете скачать и подробно изучить, а также использовать все коды, приведенные в докладах, в своей работе или хобби.

На конференции было рассмотрено огромное количество областей знаний: облачные вычисления, корпоративные решения, система моделирования и симуляции, вычислительные финансы, образовательные технологии, машинное обучение, вычислительная геометрия, наука о данных, визуализация, изображения, звук и обработка сигналов, высокопроизводительные вычисления, издательское дело и образование.
Читать дальше →

Ближайшие события

Cortana как публичный сервис аналитики и другие анонсы Microsoft World Partner Conference

Время на прочтение4 мин
Количество просмотров6.1K
На Международной партнерской конференции, которая проходит в Орландо (Флорида, США), Microsoft продемонстрировала новые решения, которые позволят строить «умное облако» совместно с партнерами и создавать персонализированные технологии для каждого бизнеса. Участники конференции также обсудили инвестиции Microsoft в международные партнерские программы, направленные на трансформацию ИТ-индустрии. 

Рекорд скорости с Azure и Cortana Analytics Suite



Набор аналитических инструментов Cortana Analytics Suite

На конференции был анонсирован набор аналитических инструментов Cortana, которые помогут компаниям использовать данные, чтобы принимать важные бизнес-решения. Ранее они использовались как облачные сервисы в виртуальном помощнике Microsoft. Теперь же в набор были добавлены инструменты для работы с  большими данными, аналитические функции и технологии машинного обучения.
Читать дальше →

Моделирование и анализ вычислительных процессов

Время на прочтение1 мин
Количество просмотров8.8K
Машины Тьюринга, Поста, Минского, алгоритмы Маркова, рекурсивные функции Клини были придуманы в первой половине двадцатого века в результате попыток формализовать понятие алгоритма. Эти математические модели до сих пор успешно применяются для решения задач разрешимости и алгоритмической сложности, но бесполезны для моделирования поведения сетевых протоколов или компонентов операционной системы. В докладе представлены некоторые современные подходы к моделированию вычислений, которые используются в индустрии при разработке сложных информационных систем.



Лекцию в марте прошлого года прочитал на факультете компьютерных наук Ростислав Яворский, доцент департамента анализа данных и искусственного интеллекта. На факультете Ростислав Эдуардович ведет курсы «Введение в программирование», «Компьютерная алгебра», «Неклассические логики и представление знаний».
Читать дальше →

Простой метод для извлечения соотношений и фактов из текста

Время на прочтение4 мин
Количество просмотров16K
Ранее мы писали об анализе отзывов о ресторанах, с целью извлечения упоминаний разных аспектов (еды, обстановки, и подобного). Недавно в комментариях возник вопрос о извлечении из текста фактической информации, т.е. можно ли, например, из отзывов об автомобилях извлечь факты, например «быстро ломается коробка передач» => ломается(коробка передач, быстро), чтобы с этими фактами можно было потом работать. В этой статье мы опишем один из подходов к решению такой проблемы.



Метод, о котором мы расскажем, опирается на ряд упрощений, он не самый точный, но зато легок в реализации и позволяет быстро создать прототип приложения, в котором он должен использоваться. В ряде случаев его будет и вполне достаточно, а для других можно ввести усовершенствования, не отступая от основного принципа.
Читать дальше →

Иерархическая классификация сайтов на Python

Время на прочтение8 мин
Количество просмотров27K
Привет, Хабр! Как упоминалось в прошлой статье, немаловажной частью нашей работы является сегментация пользователей. Как же мы это делаем? Наша система видит пользователей как уникальные идентификаторы cookies, которые им присваиваем мы или наши поставщики данных. Выглядит этот id, например, так:

42bcfae8-2ecc-438f-9e0b-841575de7479

Эти номера выступают ключами в различных таблицах, но первоначальным value является, в первую очередь, URL страниц, на которых данная кука была загружена, поисковые запросы, а также иногда некоторая дополнительная информация, которую даёт поставщик – IP-адрес, timestamp, информация о клиенте и прочее. Эти данные довольно неоднородные, поэтому наибольшую ценность для сегментации представляет именно URL. Создавая новый сегмент, аналитик указывает некоторый список адресов, и если какая-то кука засветится на одной из этих страничек, то она попадает в соответствующий сегмент. Получается, что чуть ли не 90% рабочего времени таких аналитиков уходит на то, чтобы подобрать подходящий набор урлов – в результате кропотливой работы с поисковиками, Yandex.Wordstat и другими инструментами.
logo
Получив таким образом более тысячи сегментов, мы поняли, что этот процесс нужно максимально автоматизировать и упростить, при этом иметь возможность мониторинга качества алгоритмов и предоставить аналитикам удобный интерфейс для работы с новым инструментом. Под катом я расскажу, как мы решаем эти задачи.
Читать дальше →

Большие данные и большие вопросы

Время на прочтение3 мин
Количество просмотров11K
С каждым годом популярность Big Data продолжает увеличиваться. Аналитические отчеты показывают рост процентного соотношения компаний, которые активно применяют «большие данные» в тех или иных бизнес-процессах.

Сегодня мы поговорим о том, как этот новомодный термин зачастую вводит в заблуждение и не позволяет в полной мере оценить положительные стороны того, что под ним подразумевается в действительности.

Читать дальше →

Детекция кожи в Wolfram Language (Mathematica)

Время на прочтение5 мин
Количество просмотров11K

Перевод поста Matthias Odisio "Seeing Skin with Mathematica".
Скачать файл, содержащий текст статьи, интерактивные модели и весь код, приведенный в статье, можно здесь.
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.

Детекция кожи может быть довольно полезной — это один из основных шагов к более совершенным системам, нацеленным на обнаружение людей, распознавание жестов, лиц, фильтрации на основе содержания и прочего. Несмотря на всё вышеперечисленное, моя мотивация при создании приложения заключалась в другом. Отдел разработки и исследований в Wolfram Research, в котором я работаю, подвергся небольшой реорганизации. С моими коллегами, которые занимаются вероятностями и статистикой, которые стали находиться ко мне значительно ближе, я решил разработать небольшое приложение, которое использовало бы как функционал по обработке изображений в Mathematica, так и статистические функции. Детекция кожи — первое, что пришло мне в голову.

Оттенки кожи и внешность могут варьироваться, что усложняет задачу детекции. Детектор, который я хотел разработать, основывается на вероятностных моделях для цветов пикселей. Для каждого пикселя изображения, поданного на вход, детектор кожи выдаёт вероятность того, что этот пиксель принадлежит области кожи.

Skin detection model
Читать дальше →

Лекция Дмитрия Ветрова о математике больших данных: тензоры, нейросети, байесовский вывод 

Время на прочтение2 мин
Количество просмотров49K
Сегодня лекция одного из самых известных в России специалистов по машинному обучению Дмитрия Ветрова, который руководит департаментом больших данных и информационного поиска на факультете компьютерных наук, работающим во ВШЭ при поддержке Яндекса.

Как можно хранить и обрабатывать многомерные массивы в линейных по памяти структурах? Что дает обучение нейронных сетей из триллионов триллионов нейронов и как можно осуществить его без переобучения? Можно ли обрабатывать информацию «на лету», не сохраняя поступающие последовательно данные? Как оптимизировать функцию за время меньшее чем уходит на ее вычисление в одной точке? Что дает обучение по слаборазмеченным данным? И почему для решения всех перечисленных выше задач надо хорошо знать математику? И другое дальше.



Люди и их устройства стали генерировать такое количество данных, что за их ростом не успевают даже вычислительные мощности крупных компаний. И хотя без таких ресурсов работа с данными невозможна, полезными их делают люди. Сейчас мы находимся на этапе, когда информации так много, что традиционные математические методы и модели становятся неприменимы. Из лекции Дмитрия Петровича вы узнаете, почему вам надо хорошо знать математику для работы с машинным обучением и обработкой данных. И какая «новая математика» понадобится вам для этого. Слайды презентации — под катом.
Читать дальше →

Вклад авторов