Обновить
123.9

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

Книга «Разработка приложений на базе GPT-4 и ChatGPT»

Время на прочтение11 мин
Охват и читатели18K
image Привет, Хаброжители!

Эта небольшая книга представляет собой подробное руководство для разработчиков на Python, желающих научиться создавать приложения с использованием больших языковых моделей. Авторы расскажут об основных возможностях и преимуществах GPT-4 и ChatGPT, а также принципах их работы. Здесь же вы найдете пошаговые инструкции по разработке приложений с использованием библиотеки поддержки GPT-4 и ChatGPT для Python, в том числе инструментов для генерирования текста, отправки вопросов и получения ответов и обобщения контента.

«Разработка приложений на базе GPT-4 и ChatGPT» содержит множество легковоспроизводимых примеров, которые помогут освоить особенности применения моделей в своих проектах. Все примеры кода на Python доступны в репозитории GitHub. Решили использовать возможности LLM в своих приложениях? Тогда вы выбрали правильную книгу.
Читать дальше →

SAGE v1.1.0: как мы учили генеративный корректор орфографии ошибаться реже, думать быстрее и исправлять пунктуацию

Уровень сложностиСредний
Время на прочтение15 мин
Охват и читатели4.2K

В октябре прошлого года мы выпустили SAGE — библиотеку для генеративной коррекции орфографии, которая включает в себя семейство предобученных трансформерных моделей, хаб с параллельными вручную размеченными датасетами и два алгоритма текстовой аугментации на основе намеренного искажения правописания. 

С момента прошлого релиза мы улучшили качество наших моделей более чем на 10%, добавили правку знаков пунктуации и регистра, провели эксперименты по сжатию и ускорению полученных решений, добавили разметку пунктуации в датасеты и новые метрики в библиотеку, а нашу статью взяли на EACL 2024 в Мальте. 

Читать далее

Мы опубликовали датасет для детекции речи размером более 150 тысяч часов на 6000+ языках

Уровень сложностиПростой
Время на прочтение2 мин
Охват и читатели4.7K

Мы выложили в публичный доступ гигантский датасет для детекции речи (voice activity detection).

Датасет содержит порядка 150 тысяч часов аудио более чем на 6,000 языках. Количество уникальных ISO-кодов данного датасета не совпадает с фактическим количеством языков, так как близкие языки могут кодироваться одним и тем же кодом.

Данные были размечены для задачи детекции голоса при временной дискретизации примерно в 30 миллисекунд (или 512 семплов при частоте дискретизации 16 килогерц).

Данный датасет распространяется под лицензией CC BY-NC-SA 4.0.

Давайте смотреть датасет

OmniFusion 1.1: мультимодальность теперь и на русском

Уровень сложностиСложный
Время на прочтение7 мин
Охват и читатели13K

В прошлом году на конференции AIJ 2023 мы представили первую версию OmniFusion — мультимодальной языковой модели (LLM), способной поддерживать визуальный диалог и отвечать на вопросы по картинкам. Спустя несколько месяцев мы готовы представить обновление — OmniFusion 1.1 — SoTA на ряде бенчмарков (среди моделей схожего размера) и, более того, модель хорошо справляется со сложными задачами и понимает русский язык! Самое главное — всё выкладываем в открытый доступ: веса и даже код обучения.

Ниже расскажем об особенностях модели, процессе обучения и примерах использования. В первую очередь остановимся на архитектуре, а потом отдельно расскажем о проделанных экспериментах как в части архитектурных трюков, так и о работе с данными. Ну а несколько интересных кейсов на англ и русском языках можно посмотреть на палитре ниже.

Читать далее

GPT-4, Claude 3, Gemini Pro или опенсорс — как выбрать LLM под свою задачу?

Уровень сложностиСредний
Время на прочтение10 мин
Охват и читатели41K
image

Несмотря на то, что сейчас из каждого утюга рекламируется доступ к ChatGPT и GPT-4, вообще говоря, в мире существует несколько больше разных поставщиков LLM (больших языковых моделей), и некоторые из которых могут гораааздо более эффективнее решать какие-то конкретные задачи.

Я уже полгода веду проект VseGPT.ru с доступом к разным LLM из России по OpenAI API (ну, и через вебчат). Львиная доля работы — подключение новых нейросетей. Сейчас их уже свыше 60, и каждую я попробовал хотя бы раз, ну, когда подключал.

Правда, сайт LLMExplorer, собирающий данные об опенсорс нейросетях с портала Hugging Face, говорит, что их там уже более 33 000 штук. М-да.

В общем, вероятно, я не знаю о текстовых сетках всё, но определенно знаю кое-что — хотя бы в пределах своего скромного опыта в 60 сеток. Так что кому интересно — прошу под кат.
Читать дальше →

Превращаем голосовое сообщение в структурированную заметку

Уровень сложностиПростой
Время на прочтение2 мин
Охват и читатели2.7K

Вы когда-нибудь оказывались в ситуации, когда голова была полна идей, но записать их нет возможности? Тогда вы знаете, как бывает сложно быстро и качественно зафиксировать свои мысли. А может вам знакома ситуация, когда собеседник записывает голосовое сообщение на 5 минут с описанием какого-нибудь проекта, и вам приходится переслушивать его снова и снова, чтобы понять все детали. Столкнувшись с этим, я решил сделать Telegram-бота, который может превратить голосовое сообщение в структурированную заметку.

Читать далее

Размышления о высококачественных данных, собранных людьми

Уровень сложностиСложный
Время на прочтение19 мин
Охват и читатели5.5K


Высококачественные данные — это «топливо» для современных моделей глубокого обучения. Большая часть данных, размеченных под конкретные задачи, создается живыми людьми — аннотаторами, которые занимаются классификацией или проводят RLHF-разметку для LLM alignment. Многие из представленных в этой публикации методов машинного обучения могут помочь улучшить качество данных, но главным остается внимание к деталям и скрупулёзность.

Сообщество разработчиков машинного обучения осознает ценность высококачественных данных, но почему-то складывается впечатление, что «все хотят работать над моделями, а не над данными» (Sambasivan et al. 2021).


Рисунок 1. Два направления обеспечения высокого качества данных.
Читать дальше →

Kandinsky 3.1 — новая быстрая модель генерации изображений по тексту

Уровень сложностиСредний
Время на прочтение15 мин
Охват и читатели47K

Прошёл ровно год с момента релиза модели Kandinsky 2.1 — именно эта модель принесла известность нашей исследовательской группе Sber AI Research и дала толчок развитию всей линейки моделей Kandinsky. В честь этой даты мы выпускаем новую версию модели Kandinsky 3.1, о которой я расскажу подробнее в этой статье.

Читать далее

Как устроено пространство, в котором думают языковые модели?

Уровень сложностиСложный
Время на прочтение5 мин
Охват и читатели22K

С момента выхода первой статьи «Attention is All You Need» я с жадностью и любопытством, присущими любому исследователю, пытаюсь углубиться во все особенности и свойства моделей на базе архитектуры трансформер. Но, если честно, я до сих пор не понимаю, как они работают и почему так хорошо обучаются. Очень хочу разобраться, в чём же причина такой эффективности этих моделей, и есть ли предел их возможностей?

Такому изучению трансформеров «под микроскопом» и посвящена наша научная работа, только что представленная на конференции EACL 2024, которая проходила на Мальте — «The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models». В этой работе мы сфокусировались на наблюдении за пространством эмбеддингов (активаций) на промежуточных слоях по мере обучения больших и маленьких языковых моделей (LM).

Читать далее

Attention is Not All You Need: как менялась архитектура трансформера

Уровень сложностиСложный
Время на прочтение4 мин
Охват и читатели9K

С момента выхода оригинальной статьи про трансформер прошло уже больше 7 лет, и эта архитектура перевернула весь DL: начав с NLP архитектура теперь применяется везде, включая генерацию картинок. Но та ли это архитектура или уже нет? В этой статье я хотел сделать краткий обзор основных изменений, которые используются в текущих версиях моделей Mistral, Llama и им подобным.

Читать далее

Рекуррентные сети против трансформеров

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели12K

Или история о том, как научная статья "Вам нужно только внимание..." немного перевернула игру и индустрию ИИ. 

Трансформеры становятся сотами или попросту попадают в самые последние решения сферы NLP. Кстати, заслужили свою популярность они вообще недавно — только в 2017 году, когда курс доллара был 60 рублей, а для ТГ-каналов с новыми ИИ не исчислялись тысячами.

Читать далее

Уязвимые гиганты: что общего между зулусским языком и LLM

Уровень сложностиПростой
Время на прочтение10 мин
Охват и читатели4K

Сейчас, когда каждый чих в интернете может привести к новому стартапу или технологическому прорыву, большие языковые модели (LLM) занимают своё законное место на передовой научно-технического прогресса. Они умнее, быстрее и эффективнее человека в ряде задач: написание кода, создание контента, перевод текстов и многое другое. Однако, такая высокая степень умения ставит нас перед новым набором проблем – их безопасностью и устойчивостью.

Кто бы подумал, что искусственный интеллект кусается? На деле, конечно, дело не в физическом нападении, а в уязвимостях, которые могут быть использованы злоумышленниками. Большие языковые модели действительно могут попасть под угрозу, и влияние таких событий может оказаться далеко не виртуальным.

Меня зовут Дарья Лютова, я data scientist в ЦАД ВАВТ, также я учусь в магистратуре AI Talent Hub ИТМО и интересуюсь вопросами обучения и безопасности языковых моделей. В этом посте, вместе с вами, хочу пойти дальше простого обсуждения существования уязвимостей в LLM и предлагаю вникнуть в тему проблем безопасности, касающуюся больших языковых моделей, выявить слабые места и прийти к пониманию методов их укрепления. Очень надеюсь, что эта информация поможет тем, кто преследует цель не только достичь новых высот в области AI, но и удостовериться, что их достижения надежны и устойчивы к киберугрозам.

Поехали!

Общее описание и реализация Word2Vec с помощью PyTorch

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели25K

В данной статье даётся общее описание векторного представления вложений слов - модель word2vec. Также рассматривается пример реализации модели word2vec с использованием библиотеки PyTorch. Приведена реализация как архитектуры skip-gram так и CBOW.

Читать далее

Ближайшие события

Сравнение работы MTS AI Chat с другими русскоязычными LLM

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели7.9K

Всем привет!

Мы в MTS AI занимаемся созданием технологий и продуктов на базе искусственного интеллекта. Непосредственно наша группа фундаментальных исследований разрабатывает LLM и модели для генерации кода.

В этой статье мы представим нашу первую фундаментальную модель MTS AI Chat-7B. Также сравним результаты ее работы с другими русскими языковыми моделями, такими как YandexGPT, GigaChat и GigaChat‑Pro.

Читать далее

Контекст больше не предел: Линейка русскоязычных энкодеров ruRoPEBert и как она создавалась

Уровень сложностиСредний
Время на прочтение9 мин
Охват и читатели12K

Привет, Хабр! Если вы интересуетесь NLP или просто современными DL моделями, то приглашаю вас узнать, как можно, имея всего лишь одну A100, около 30 гигабайтов текста и несколько дней обучения, решить проблему ограниченного окна контекста для русскоязычных трансформеров. А ещё сделаем несколько оптимизаций и добьёмся почти лучших метрик в бенчмарке encodechka.

Погрузиться в контекст

WaveSync: Новый путь к нелинейному анализу эмбеддингов

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели3.7K

WaveSync — новый алгоритм для детального, нелинейного и быстрого анализа сходства эмбеддингов и векторов.

Алгоритм является в большинстве задач заменой линейному косиносному сходству. Он позволяет улучшить точность обработки языка и открывает новые перспективы для разработчиков и исследователей в области NLP.

Читать далее

Сравнение различных схем квантования для LLM

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели33K

Как запустить локально LLM 70B параметров на 1 видеокарте с 24gb? Нужно квантование!

Квантование - это процесс уменьшения битности вычислений в нейронной сети, используемых для представления весов, смещений и активаций. Путем снижения точности мы можем значительно сократить требования к памяти и вычислительной сложности модели.

Читать далее

Как мы научили YandexGPT пересказывать видео

Уровень сложностиСредний
Время на прочтение14 мин
Охват и читатели30K

Порой бывает сложно перематывать длинный ролик в надежде найти хоть что-то интересное или тот самый момент из Shorts. Или иногда хочется за ночь узнать, о чём шла речь на паре научных конференций. Для этого в Браузере есть волшебная кнопка — «Пересказать», которая экономит время и помогает лучше понять, стоит ли смотреть видео, есть ли в нём полезная информация, и сразу перейти к интересующей части.

Сегодня я расскажу про модель, которая быстро перескажет видео любой длины и покажет таймкоды для каждой части. Под катом — история о том, как мы смогли выйти за лимиты контекста модели и научить её пересказывать даже очень длинные видео.

Читать далее

LLM Leaderboard за февраль 2024

Уровень сложностиПростой
Время на прочтение2 мин
Охват и читатели5.8K

Привет, Хабр!

Сегодня мы поговорим о том, какие LLM лучше всего работаю на бизнес-задачах. AI-хайп находится на локальном пике, похоже, что весь мир только и делает, что внедряет AI-фичи в свои продукты, собирает миллионы на разработку еще одной оболочки для ChatGPT, заполняет свои ряды AI-тулами и, кажется, предоставляет работу роботам, пока сами попивают кофе в старбаксе.

Читать далее

NLP для поиска грамматических ошибок

Уровень сложностиПростой
Время на прочтение10 мин
Охват и читатели3.7K

Привет, Хабр!

Сегодня с вами участник профессионального сообщества NTA Журавлев Сергей.

В 2017 году на свет вышла статья разработчиков Google под названием «Attention is All You Need». В ней впервые была предложена идея трансформеров — моделей машинного обучения, ключевой особенностью которых было использование так называемых «слоев внимания», определяющих, какие слова и в какой степени важны для формирования контекста предложения. Публикация стала началом активного развития и продвижения моделей машинного обучения на описанной архитектуре.

Читать далее

Вклад авторов