Как стать автором
Поиск
Написать публикацию
Обновить
74.95

Системное программирование *

Обеспечение работы прикладного ПО

Сначала показывать
Порог рейтинга
Уровень сложности

Анонс Rust 1.9

Время на прочтение5 мин
Количество просмотров8.8K

Мы рады представить новую версию Rust 1.9. Rust — это системный язык программирования, нацеленный на безопасную работу с памятью, скорость и параллельное выполнение кода.


Как обычно, вы можете установить Rust 1.9 с соответствующей страницы официального сайта, а также ознакомиться с подробным списком изменений в этой версии на GitHub. В этот релиз вошло порядка 1400 патчей.


Что вошло в стабильную версию 1.9


Управляемая размотка стека


Самое большое изменение в Rust 1.9 — стабилизация модуля std::panic, который предоставляет методы остановки процесса размотки стека, запущенного паникой:

Читать дальше →

Dropbox объяснил, почему внедряется в ядро операционной системы

Время на прочтение3 мин
Количество просмотров42K


Ровно месяц назад Dropbox анонсировал Dropbox Infinite — «революционно новый способ доступа к вашим файлам», как писала компания в корпоративном блоге. В демонстрационном видео показали, что десктопный клиент Dropbox предоставляет прямой доступ к облачному хранилищу файлов на уровне файловой системы, без необходимости запускать браузер. Локальный диск «увеличивается» на размер облачного хранилища, файлы доступны напрямую. Облачное хранилище может быть больше по размеру, чем локальный диск. Сейчас компания раскрыла технические подробности, как работает эта функция.

Сразу после первого анонса эксперты высказали опасения, что Project Infinite откроет доступ в систему посторонним, если они найдут уязвимости в клиенте Dropbox. Собственное расширение ядра от Dropbox станет тогда своеобразным бэкдором в системе.
Читать дальше →

Nginx + OpenSSL 1.0.2h = ALPN. Включаем поддержку ALPN на Ubuntu 14.04

Время на прочтение4 мин
Количество просмотров21K
Итак, вкратце опишу суть проблемы: если вы используете HTTP/2 на базе Nginx и Ubuntu 14.x-, то с 31 мая HTTP/2 в Chrome работать перестанет. Но решить проблему достаточно просто.
Читать дальше →

Особенности тестирования технологии C/R в Linux

Время на прочтение4 мин
Количество просмотров6.7K


В 2012 году Эндрю Мортон был пессимистично настроен в отношении будущего проекта CRIU (Checkpoint and Restore In Userspace), когда принимал первые изменения в Linux ядро для поддержки C/R (Checkpoint/Restore). Идея реализовать функциональность сохранения и восстановления запущенных процессов в пространстве пользователя выглядела сумасшедшей, а спустя 4 года проект не только жив, а всё больше вызывает интерес к себе. До старта проекта CRIU предпринимались попытки реализовать C/R в Linux (DMTCP, BLCR, OpenVZ, CKPT и т.д.), но и все они по разным причинам были обречены на провал в то время как CRIU стал жизнеспособным проектом. К сожалению от этого задача C/R в Linux не стала проще. В этой статье я расскажу об особенностях тестирования CRIU.
Читать далее.

Что делает центральный процессор, когда ему нечего делать

Время на прочтение10 мин
Количество просмотров73K

Мужик приходит устраиваться работать на стройку. Его спрашивает мастер:
— Что делать умеешь?
— Могу копать…
— А что еще?
— Могу не копать…

Не секрет, что современные процессоры работают очень быстро. Работа их заключается в постоянном извлечении из памяти инструкций и выполнения предписанных в них действий. Однако оказывается, по тем или иным причинам часто требуется притормозить этот процесс. В прикладных программах редко приходится задумываться о том, что при этом происходит с процессором. Но вот для создателей системного софта это далеко не праздный вопрос.


Неактивным процессор может быть не только для экономии энергии, но и в результате возникновения особых ситуаций, в процессе выполнения протоколов инициализации или как итог намеренных действий системных программ. Почему это интересно? При написании программных моделей (в том числе виртуальных машин) компьютерных систем, необходимо корректно моделировать переходы между состояниями виртуальных процессоров. В работе системных программ регулярно возникают ситуации, когда по тем или иным причинам ЦПУ должен «притормозить». Умение корректно использовать и моделировать эти ситуации зависит от знания и понимания спецификаций.


В статье фокус делается на программной стороне вопроса состояний процессора. Я не буду концентрироваться на деталях реализации (напряжения, пины, частоты и т.д.), так как 1) они существенно различаются между поколениями и моделями процессоров даже одной архитектуры, тогда как программный интерфейс остаётся обратно совместимым; 2) они не видны напрямую программам и ОС. Это попытка просуммировать информацию, разбросанную по многим страницам справочника Intel IA-32 and Intel 64 Software Developer Manual.


Начнём с простой и всем знакомой ситуации — процессор включён, бодр и весел.

Читать дальше →

Драйверы умного или виртуального железа

Время на прочтение5 мин
Количество просмотров11K
Первая статья про драйверы была уж совсем вводной, и мне подумалось, что её нельзя не дополнить рассказом про то, как устроены драйверы более современных устройств.

Для начала введём определение bus master: устройство, способное быть не только ведомым, но и ведущим на шине компьютера. То есть — не только отвечать на транзакции ввода-вывода, инициированные процессором, но и самостоятельно их инициировать — по собственной инициативе «ходить» в память.

История таких устройств уходит корнями в понятие DMA: ещё во времена прародителя микропроцессоров, микропроцессора 8080 (КР5080ИК80), появилось понимание, что процессор хорошо бы разгрузить от рутинной операции перетаскивания байтиков между устройствами в-в и памятью.
Читать дальше →

UDP/TCP File System, Trivial Remote File System

Время на прочтение2 мин
Количество просмотров22K
Сегодня выходной, так что напишу коротко про мелочи, до которых, как правило, руки не доходят.

TCP FS



Есть ещё одна вещь, которой нет в современном Юниксе и которую я хочу иметь в unix box фантома. Она проста как мычание, и почему её никто не сделал — непостижимо:

#cat /tcp/host/port > local_file


Правда, я хочу использовать иной синтаксис имени файла, URL style — tcp://host:port, но это уже детали. Естественно, наравне с TCP просится UDP, и там вообще проблем нет.

Заголовок спойлера
Вообще unix-подсистема Фантома «ест» как традиционные Юниксовые имена, /usr/include/stdio.h, так и URL-и, tcp://ya.ru:80.


Для TCP есть очевидная проблема — нужен ли нам listen или connect, но её можно решить через указание в имени «файла» определённого суффикса.

Сказать на эту тему настолько больше нечего, что перейдём без остановки к следующей.

TRFS — тривиальная дистанционная файловая система.


Читать дальше →

Linux Programming Interface

Время на прочтение5 мин
Количество просмотров31K
Здравствуйте, уважаемые читатели! С наступающими вас праздниками.

В последней апрельской публикации мы хотели бы рассказать вам о замечательной книге Майкла Керриска «Linux Programming Interface», которая в очередной раз вернулась в наше поле зрения благодаря превосходным продажам другой литературы по Linux:



Конечно, сложная книга о системном программировании объемом 1500+ страниц — литература, прямо скажем, на любителя. Но, поскольку отзывы о ней до сих пор восторженные, а нам потратиться на Linux завсегда не жалко предлагаем почитать ее обзор, опубликованный в далеком 2011 году.
Читать дальше →

Lazy threads: опциональный параллелизм

Время на прочтение3 мин
Количество просмотров8.9K
Статья-гипотеза. Описанное нигде не было реализовано, хотя, в принципе, ничто не мешает запилить такое в Фантоме.

Эта идея пришла мне в голову очень давно и даже где-то была мной описана. Триггер к тому, чтобы её описать сегодня — обсуждение сетевых драйверов Линукса в комментариях к Анатомии драйвера.

Сформулирую проблему, описанную там, как я её понимаю: сетевой драйвер Линукса работает в отдельной нити, которая читает принятые пакеты из устройства и синхронно их обрабатывает. Прогоняет через роутинг, файрволл и, если пакет не нам, отправляет его в исходящий интерфейс.

Понятно, что некоторые пакеты обслуживаются быстро, а иные могут потребовать много времени. В такой ситуации хотелось бы иметь механизм, который динамически порождает обслуживающие нити по мере необходимости, и механизм достаточно дешёвый в ситуации, когда лишние нити не нужны.

То есть хотелось бы такого вызова функции, который при необходимости можно конвертировать в старт нити. Но по цене вызова функции, если нить реально не оказалась нужна.

Мне эта идея пришла когда я рассматривал совершенно фантастические модели для Фантом, включая акторную модель с запуском нити вообще на любой вызов функции/метода. Саму модель я отбросил, а вот идея lazy threads осталась и до сих пор кажется интересной.

Как это.
Читать дальше →

Анатомия драйвера

Время на прочтение5 мин
Количество просмотров26K
Опять вернёмся в традиционную область разработки операционных систем (и приложений для микроконтроллеров) — написание драйверов.

Я попробую выделить некоторые общие правила и каноны в этой области. Как всегда — на примере Фантома.

Драйвер — функциональная компонента ОС, ответственная за отношения с определённым подмножеством аппаратуры компьютера.

С лёгкой руки того же Юникса драйвера делятся на блочные и байт-ориентированные. В былые времена классическими примерами были драйвер диска (операции — записать и прочитать сектор диска) и драйвер дисплея (прочитать и записать символ).

В современной реальности, конечно, всё сложнее. Драйвер — типичный инстанс-объект класса, и классов этих до фига и больше. В принципе, интерфейс драйверов пытаются как-то ужать в прокрустово ложе модели read/write, но это самообман. У драйвера сетевой карты есть метод «прочитать MAC-адрес карты» (который, конечно, можно реализовать через properties), а у драйвера USB — целая пачка USB-специфичных операций. Ещё веселее у графических драйверов — какой-нибудь bitblt( startx, starty, destx, desty, xsize, ysize, operation ) — обычное дело.

Цикл жизни драйвера, в целом, может быть описан так:

  • Инициализация: драйвер получает ресурсы (но не доступ к своей аппаратуре)
  • Поиск аппаратуры: драйвер получает от ядра или находит сам свои аппаратные ресурсы
  • Активация — драйвер начинает работу
  • Появление/пропадание устройств, если это уместно. См. тот же USB.
  • Засыпание/просыпание аппаратуры, если это уместно. В контроллерах часто неиспользуемая аппаратура выключается для экономии.
  • Деактивация драйвера — обслуживание запросов прекращается
  • Выгрузка драйвера — освобождаются все ресурсы ядра, драйвер не существует.


(Вообще я написал в прошлом году черновик открытой спецификации интерфейса драйвера — см. репозиторий и документ.)

Мне известны три модели построения драйвера:

  • Поллинг
  • Прерывания
  • Нити (threads)

Читать дальше →

Intel ME. Как избежать восстания машин?

Время на прочтение6 мин
Количество просмотров176K


В прошлый раз мы рассказали об Intel Management Engine (ME) — подсистеме, которая встроена во все современные компьютерные платформы (десктопы, лэптопы, серверы, планшеты) с чипсетами компании Intel. Эта технология многими воспринимается как аппаратная «закладка», и на то есть причины. Достаточно сказать, что Intel ME является единственной средой исполнения, которая:
  • работает даже тогда, когда компьютер выключен (но электропитание подаётся);
  • имеет доступ ко всему содержимому оперативной памяти компьютера;
  • имеет внеполосный доступ к сетевому интерфейсу.


Ошарашенный присутствием такого компонента в компьютере, пользователь (получается, что именно «пользователь», а не «владелец») наверняка задавался вопросом: можно ли выключить Intel ME?

Эта статья целиком посвящена этому вопросу.

Читать дальше →

Персистентная ОС: ничто не блокируется

Время на прочтение6 мин
Количество просмотров18K
Это — статья-вопрос. У меня нет идеального ответа на то, что здесь будет описано. Какой-то есть, но насколько он удачен — неочевидно.

Статья касается одной из концептуальных проблем ОС Фантом, ну или любой другой системы, в которой есть персистентная и «волатильная» составляющие.

Для понимания сути проблемы стоит прочесть одну из предыдущих статей — про персистентную оперативную память.

Краткая постановка проблемы: В силу того, что прикладная программа в ОС Фантом персистентна (не перезапускается при перезагрузке), а ядро — нет (перезапускается при перезагрузке и может быть изменено между запусками), в такой системе нельзя делать блокирующие системные вызовы. Обычным способом.
Читать дальше →

Атрибуты устройств, или ioctl must die

Время на прочтение3 мин
Количество просмотров14K
В процессе работы над ОС Фантом, которая вообще не Юникс никаким местом, мне, тем не менее, захотелось сделать в нём Unix-compatible подсистему. Не то, чтобы прямо POSIX, но что-то достаточно близкое. Отчасти из любопытства, отчасти для удобства, отчасти как ещё один migration path. (Ну и вообще было интересно, насколько трудно написать простенький Юникс «из головы».) В качестве цели номер 1 была поставлена задача запустить quake 1 for Unix, которая и была достигнута.

В процессе, естественно, появились open/close/r/w/ioctl, и появилось ощущение, что последний неприлично, постыдно устарел. В качестве упражнения для размятия мозга я реализовал (в дополнение к обычному ioctl) некоторый альтернативный API, который бы позволил управлять свойствами устройств более гибким и удобным с точки зрения пользователя способом. Этот API, конечно, имеет свои очевидны минусы, и, в целом, эта статья — RFC, aka request For Comments.

Итак, API на уровне пользователя:

// returns name of property with sequential number nProperty, or error
errno_t listproperties( int fd, int nProperty, char *buf, int buflen );

errno_t getproperty( int fd, const char *pName, char *buf, int buflen );
errno_t setproperty( int fd, const char *pName, const char *pValue );


Правила:

  1. Никаких дефайнов с номерами, только имена.
  2. Никаких бинарных данных, только строки

Читать дальше →

Ближайшие события

От шедулера к планировщику

Время на прочтение7 мин
Количество просмотров16K
См. две другие статьи этой группы — Делаем многозадачность и Преемптивность: как отнять процессор.

Сразу просьба к строгим читателям. Если вы не поняли какой-либо термин из применённых — спросите, я подскажу, что я имел в виду. А если вам нравится другое написание или перевод этого термина — укажите его в комментарии. Я применяю те, которые нравятся мне.

Итак, в прошлых статьях описан механизм реализации многозадачности за вычетом планировщика, он же шедулер, он же скедулер, он же Васька меченый, сорри, заговариваюсь я с этими терминами…

Как я уже говорил, шедулер — это просто функция, которая отвечает на вопрос: какую нить и на сколько времени поставить на процессор.

Кстати, в SMP системе шедулер ничем не отличается от однопроцессорного. Вообще, чтобы проще понимать структуру взаимодействия сущностей на одном и нескольких процессорах, проще всего представить себе следующую модель: для каждого процессора есть нить «простоя» (которая работает, если вообще больше некому и просто останавливае процессор до прерывания), которая постоянно пытается «отдать» процессор (которым она как бы владеет) другим нитям, выбирая нить с помощью шедулера.

Говоря о шедулере нельзя не сказать о приоритетах.

Приоритет — свойство нити (или процесса) влияющее на конкуренцию этой нити с другими нитями за процессор.

Приоритет обычно описывается парой <класс приоритета, значение приоритета внутри класса>.
Читать дальше →

Преемптивность: как отнять процессор

Время на прочтение6 мин
Количество просмотров13K
Эта статья не имеет смысла без предыдущей, в которой описывались основные механизмы переключения контекстов в многозадачной ОС.

Здесь я расскажу, как кооперативная многозадачность превращается во враждебную преемптивную.

Суть этого превращения проста. В машине есть таймер, таймер генерирует прерывания, прерывания приостанавливают код нити и отдают процессор в руки механизма многозадачности. Оный уже вполне кооперативно переключает процессор на новую нить, как и описано в предыдущей статье.

Но, как обычно, есть нюансы. См. код для интела.

Сам «отъём» процессора делается как в рамках обычного хардверного прерывания, обычно — по таймеру, так и в рамках «софтверного» прерывания — которое, собственно, такое же прерывание, но вызванное специальной инструкцией процессора. Такой способ переключения контекста нужен, если мы (например, в рамках примитива синхронизации) явно останавливаем нить и не хотим ждать, пока прилетит таймерное прерывание.
Читать дальше →

Делаем мультизадачность

Время на прочтение6 мин
Количество просмотров15K
Я стараюсь чередовать статьи про разработку ОС вообще и специфические для ОС Фантом статьи. Эта статья — общего плана. Хотя, конечно, я буду давать примеры именно из кода Фантома.

В принципе, реализация собственно механизма многозадачности — довольно простая вещь. Сама по себе. Но, во-первых, есть тонкости, и во-вторых, она должна кооперироваться с некоторыми другими подсистемами. Например, та же реализация примитивов синхронизации очень тесно связана с реализацией многозадачности. Есть небанальная связь так же и с подсистемой обслуживания прерываний и эксепшнов. Но об этом позже.

Начнём с того, что есть два довольно мало связанных модуля — собственно подсистема переключения задач (контекстов) и подсистема шедулинга. Вторую мы сегодня обсуждать почти не будем, просто опишем кратко.

Шедулер — это функция, которая отвечает на вопрос «какой нити отдать процессор прямо сейчас». Всё. Простейший шедулер просто перебирает все нити (но, конечно, готовые к исполнению, не остановленные) по кругу (RR алгоритм). Реальный шедулер учитывает приоритеты, поведение нити (интерактивные получают больше, чем вычислительные), аффинити (на каком процессоре нить работала в прошлый раз) и т.п., при этом умеет сочетать несколько классов приоритетов. Типично это класс реального времени (если есть хотя бы одна нить этого класса — работает она), класс разделения времени и класс idle (получает процессор только если два предыдущих класса пустые, то есть в них нет нитей, готовых к исполнению).

На сём пока про шедулер закончим.

Перейдём к собственно подсистеме, которая умеет отнять процессор у одной нити и отдать его другой.
Читать дальше →

Устройство NVRAM в UEFI-совместимых прошивках, часть четвертая

Время на прочтение6 мин
Количество просмотров14K
И снова здравствуйте, уважаемые читатели.
Начатый в предыдущих трех частях разговор о форматах хранилищ NVRAM, используемых различными реализациями UEFI, подходит к своему логическому концу. Нерассмотренным остался только один формат — NVAR, который используется в прошивках на основе кодовой базы AMI Aptio. Компания AMI в свое время смогла «оседлать» практически весь рынок прошивок для десктопных и серверных материнских плат, поэтому формат NVAR оказался чуть ли не распространённее, чем оригинальный и «стандартный» VSS.
Если вам интересно, чем хорош и чем плох формат хранилища NVRAM от AMI — добро пожаловать под кат.
Here be dragons

Устройство NVRAM в UEFI-совместимых прошивках, часть третья

Время на прочтение7 мин
Количество просмотров17K
Перед вами третья часть моего повествования о форматах NVRAM, используемых UEFI-совместимыми прошивками различных производителей. В первой части я рассказывал об NVRAM вообще и о «стандартном» формате VSS, во второй — об интересных блоках, которые можно найти рядом с NVRAM в этом формате, а в этой речь пойдет о целой россыпи различных форматов, используемых в прошивках на платформе Phoenix SCT: FlashMap, EVSA, Intel uCode, CMDB, SLIC pubkey и SLIC marker.
Если вам интересно, что умудрились напридумывать на замену VSS разработчики из Phoenix — добро пожаловать под кат, только предупреждаю сразу, статья получилась достаточно длинной.
Phoenix SCT во все поля!

Устройство NVRAM в UEFI-совместимых прошивках, часть вторая

Время на прочтение8 мин
Количество просмотров16K
Продолжаем разговор о форматах NVRAM в UEFI-совместимых прошивках, начатый в первой части. На этот раз на повестке дня форматы блока Fsys из прошивок компании Apple, блока FTW из прошивок, следующих заветам проекта TianoCore, и блока FDC, который можно найти в прошивках, основанных на кодовой базе компании Insyde.
Если вам интересно, зачем нужны и как выглядят не-NVRAM данные, которые можно обнаружить рядом с NVRAM в прошивках различных производителей — добро пожаловать под кат.
В этот раз у нас не NVRAM, господа.

Устройство NVRAM в UEFI-совместимых прошивках, часть первая

Время на прочтение9 мин
Количество просмотров51K
Здравствуйте, уважаемые читатели. Когда-то очень давно, почти 3 года назад, я написал пару статей о форматах данных, используемых в UEFI-совместимых прошивках. С тех пор в этих форматах мало что изменилось, поэтому писать про них снова я не буду. Тем не менее, в тех статьях был достаточно серьезный пробел — отсутствовали какие-либо упоминания об NVRAM и используемых для её хранения форматах, т.к. тогда разбор NVRAM мне был попросту неинтересен, ибо те же данные можно получить из UEFI Shell на работающей системе буквально одной командой dmpstore.
По прошествии трех лет выяснилось, что хранилище NVRAM умеет разваливаться по различным причинам, и чаще всего это событие приводит к «кирпичу», т.е. воспользоваться вышеупомянутой командой уже не получится, а данные (или то, что от них осталось) надо доставать. Собрав пару развалившихся NVRAM'ов вручную в Hex-редакторе, я сказал "хватит это терпеть!", добавил поддержку разбора форматов NVRAM в UEFITool NE, и решил написать цикл статей об этих форматах по горячим следам и свежей памяти.
В первой части поговорим о том, что вообще такое этот NVRAM, и рассмотрим формат VSS и его вариации. Если интересно — добро пожаловать под кат.
NVRAM - наш рулевой!

Вклад авторов