После шести лет тщательных наблюдений космический телескоп НАСА «Хаббл» впервые предоставил прямые доказательства существования изолированной чёрной дыры, дрейфующей в межзвездном пространстве, путем точного измерения массы объекта. До сих пор все массы чёрных дыр определялись статистически или посредством взаимодействий в двойных системах или в ядрах галактик.
Недавно обнаруженная блуждающая чёрная дыра находится примерно в 5000 световых лет от нас, в спиральном рукаве Киля-Стрельца нашей галактики. Её открытие позволяет астрономам оценить, что ближайшая к Земле изолированная чёрная дыра звездной массы может находиться на расстоянии 80 световых лет от Земли.
Ближайшая к нашей Солнечной системе звезда, Проксима Центавра, находится на расстоянии немногим более 4 световых лет. Чёрные дыры, блуждающие по нашей галактике, рождаются из редких звезд (менее одной тысячной общего состава галактики), которые имеют размер не менее 20 раз массивнее нашего Солнца. Эти звезды взрываются как сверхновые, а остатки ядра под действием гравитации сдавливаются в чёрную дыру. Поскольку самодетонация не является идеально симметричной, чёрная дыра может получить толчок и полететь через нашу галактику, как взорвавшееся пушечное ядро.
Телескопы не могут сфотографировать такие объекты, потому что они не излучают никакого света. Однако чёрная дыра искажает пространство, которое затем отражает и усиливает звёздный свет.
Наземные телескопы, которые отслеживают яркость миллионов звезд в направлении центральной выпуклости нашего Млечного Пути, фиксируют внезапное увеличение яркости одной из них, когда массивный объект проходит между Землёй и звездой.
Две группы астрономов использовали данные «Хаббла» в своих исследованиях: одну возглавлял Кайлаш Саху из Научного института космического телескопа в Балтиморе, штат Мэриленд; а другую — Кейси Лэм из Калифорнийского университета в Беркли. Результаты команд немного различаются, но обе предполагают наличие некоего объекта.
Деформация пространства из-за гравитации объекта переднего плана, проходящего перед звездой, находящейся далеко позади него, на мгновение изгибает и усиливает свет фоновой звезды. Астрономы используют явление, называемое гравитационным микролинзированием, для изучения звезд и экзопланет в примерно 30 000 событий, наблюдаемых до сих пор внутри нашей галактики.
След чёрной дыры на переднем плане выделяется как уникальный среди других событий микролинзирования. Очень сильная гравитация чёрной дыры растянет продолжительность события линзирования более чем на 200 дней. Кроме того, если бы промежуточный объект был звездой переднего плана, это вызвало бы временное изменение цвета звездного света, измеренное, потому что свет от звезд переднего и заднего плана на мгновение смешался бы вместе. Но в случае с этой чёрной дырой не было замечено никакого изменения цвета.
«Хаббл» использовали для измерения величины отклонения изображения фоновой звезды чёрной дырой. Изображение звезды было смещено от обычного положения примерно на миллисекунду дуги. Это эквивалентно измерению диаметра 25-центовой монеты в Лос-Анджелесе, если смотреть из Нью-Йорка.
Этот метод астрометрического микролинзирования предоставил информацию о массе, расстоянии и скорости чёрной дыры. Величина отклонения из-за интенсивного искривления пространства чёрной дырой позволила команде Саху оценить, что она весит семь солнечных масс.
Команда Лэма сообщает о несколько более низком диапазоне масс, а это означает, что объект может быть либо нейтронной звездой, либо чёрной дырой. По оценкам астрономов, масса невидимого компактного объекта в 1,6–4,4 раза больше массы Солнца. В верхней части этого диапазона объект будет чёрной дырой; в нижней части это будет нейтронная звезда.
«Как бы нам ни хотелось сказать, что это определенно чёрная дыра, мы должны сообщить обо всех возможных решениях. Сюда входят как чёрные дыры с меньшей массой, так и, возможно, даже нейтронная звезда», — сказала Джессика Лу из команды Беркли.
«Что бы это ни было, этот объект — первый обнаруженный остаток тёмной звезды, блуждающий по галактике без сопровождения другой звезды», — добавил Лэм.
По оценкам команды Саху, изолированная чёрная дыра движется по галактике со скоростью 160 000 километров в час (этой скорости достаточно, чтобы совершить путешествие с Земли на Луну менее чем за три часа). Она перемещается быстрее, чем большинство соседних звезд в этой области нашей галактики.
Когда чёрная дыра прошла перед фоновой звездой, расположенной в галактической выпуклости на расстоянии 19 000 световых лет, свет звезды, идущий к Земле, усиливался в течение 270 дней. Однако потребовалось несколько лет наблюдений, чтобы проследить, как положение звезды на заднем плане менялось из-за отклонения света чёрной дырой на переднем плане.
О существовании чёрных дыр звездной массы было известно с начала 1970-х годов, но все измерения их массы — до сих пор — проводились в двойных звездных системах. Газ от звезды-компаньона попадает в чёрную дыру и нагревается до таких высоких температур, что испускает рентгеновские лучи. Массы около двух десятков чёрных дыр были измерены в рентгеновских двойных системах благодаря их гравитационному воздействию на своих компаньонов. Оценки массы колеблются от 5 до 20 солнечных масс. Чёрные дыры, обнаруженные в других галактиках гравитационными волнами от их слияний с объектами-компаньонами, имеют массу до 90 масс Солнца.
«Обнаружение изолированных чёрных дыр даст новое представление о популяции этих объектов в нашем Млечном Пути», — сказал Саху.
Пока астрономы получили лишь первое свидетельство того, что существуют одинокие чёрные дыры, блуждающие по нашей галактике. В теории их количество может доходить до 100 млн.
Ранее «Хаббл» сделал крупнейшее изображение в ближнем инфракрасном диапазоне, которое может помочь найти самые редкие галактики во Вселенной. Международная группа учёных уже нанесла на карту области звездообразования во Вселенной и пытается узнать, как возникли самые ранние и самые далекие галактики.