В то время пока я собирался на ланч, мой ко-воркер Дейв окликнул меня: «Хэй, Алекс, а ты не хочешь заниматься улучшениями навыков своего программирования?». Я задумался. Это было интересное предложение, но я склонялся ответить отказом: «Сейчас я занимаюсь развитем навыков говорения на языках, дружище!». Ладно, шучу. Утро началось с того, что я добрался до почты и заполучил в руки копеечный китайский Кубик, случайно заказанный на али. К обеду я проштудировал мануал сборки и обновил мышечную память, а к вечеру пришло осознание, что я наигрался. Будущее кубика было ясным: он будет пылиться на полке, раз или два в неделю может быть я буду его собирать, чтобы привести мысли в порядок или отвлечься, но не более того. Соревнование в механической скорости сборки? Non merci, уж лучше скворечники делать…
Ситуацию, как всегда, спасли мысли об автоматизации. После недолгого изучения я узнал рекогнисцировку. Для начала, число Бога уже давно найдено и равно 20. Правда задача сборки от этого не упрощается, т.к. использовать граф кратчайших путей для всех возможных конфигураций кубика не очень спортивно и немножко накладно по ресурсам. Алгоритм Бога предполагает под собой некое разумное количество использованной памяти, и в то же время обязан обеспечить минимально возможное число модификаций. Так вот, такого алгоритма еще нет. Есть ряд алгоритмов, позволяющих заметно ускорить сборку по сравнению с традиционными шаблонными методоми, но повторять кем-то уже проложенный (математически) путь мне показалось скучным. Если кому интересно, вот хороший анализ Далее есть традиционные шаблонные методы. Идея здесь в послойной сборке снизу вверх с использованием формул. Формула — последовательность модификаций Кубика, приводящая к таким-то целевым модификациям, и таким-то побочным. Соответственно, побочные модификации почти всегда падают на еще не собранные слои. Различаются шаблонные методы уровнем детализации шаблонов. Всякого рода спидкуберы знают все мыслимые шаблоны для большого количества частных случаев, что позволяет отыграть лишнюю 0.1 секунду с каждой модификации на соревнованиях. Пример, на что еще можно потратить жизнь.
Итак, я постепенно формировал для себя задачу. В итоге, формулируется она так: за кратчайшее реальное время необходимо написать решалку для Кубика Рубика.
Что мы знаем о Кубике? Число его состояний описывается как
(8! × 3^7) × (12! × 2^11)/2 = 43 252 003 274 489 856 000.