Я долго работал над этой нейросетью в PyTorch, достаточно сказать, что 2 последних года я почти всё время посвятил именно этому. Вот один из моих результатов:
User
Нейросети и золотое сечение: второй заход
13 min
3.8KЯ как-то написал статью, в которой описал простейшую математическую модель эволюции нейросети и её отбора на умение складывать числа в системах счисления с основаниями 2 и золотым сечением, причём оказалось, что золотое сечение лучше работает. Так вот, мой первый опыт оказался совсем уж плохим, так как я не учёл ряд важных нюансов, связанных с тем, что ошибку стоило учитывать не на нейрон, а на бит информации, поэтому я решил улучшить свой эксперимент, и внести в него ещё несколько корректировок.
-3
Почему нам везде хочется видеть золотое сечение? Попытка (неудачная) эволюционного анализа при помощи нейросетей на C++
5 min
3.1KНедавно я задался вопросом: связано ли как-то наше желание везде видеть золотое сечение с какими-то сугубо культурными вещами, или же в этом скрыта какая-то более глубокая закономерность, связанная с устройством нашего мозга? Чтобы разобраться в этом вопросе, я решил сделать несколько вещей:
Так как речь идёт о программировании, опишу поподробнее второй и третий пункты.
- Сформулировать конкретную гипотезу относительно данной закономерности. Я решил, что лучше всего подойдёт предположение, что наш мозг использует систему счисления, основанную на разложении чисел на степени золотого сечения, так как некоторые её особенности очень близки работе примитивных нейросетей: дело в том, что степени золотого сечения более высокого порядка можно разложить бесконечным числом способов в суммы степеней менее высокого порядка и даже отрицательных степеней. Таким образом, более высокая степень как бы «возбуждается» от нескольких низших степеней, тем самым проявляя то самое сходство с нейросетью.
- Описать конкретный способ её проверки: я выбрал мат. моделирование эволюции мозга посредством случайных изменений в простейшей возможной нейросети — матрице линейного оператора.
- Составить критерии подтверждения гипотезы. Моим критерием было то, что система счисления, основанная на золотом сечении, реализуется на нейросетевом движке при тех же объёмах информации с меньшим числом ошибок, чем двоичная.
Так как речь идёт о программировании, опишу поподробнее второй и третий пункты.
+6
Information
- Rating
- Does not participate
- Registered
- Activity