• Настройка модели машинного обучения: подбор признаков и оптимизация гиперпараметров

    Введение


    В предыдущей статье цикла мы обсудили постановку задачи анализа данных, сделали первые шаги в настройке модели машинного обучения и написали интерфейс, удобный для использования прикладным программистом. Сегодня мы проведем дальнейшее исследование задачи — поэкспериментируем с новыми признаками, попробуем более сложные модели и варианты их настроечных параметров.



    В статье, насколько возможно, используется русскоязычная терминология, выбранная автором на основе буквальных переводов англоязычных терминов и устоявшегося в сообществе сленга. О ней можно почитать здесь.
    Читать дальше →
  • Анализ данных — основы и терминология

    В этой статье я бы хотел обсудить базовые принципы построения практического проекта по (т. н. «интеллектуальному») анализу данных, а также зафиксировать необходимую терминологию, в том числе русскоязычную.

    Согласно википедии,
    Анализ данных — это область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений.
    Говоря чуть более простым языком, я бы предложил понимать под анализом данных совокупность методов и приложений, связанных с алгоритмами обработки данных и не имеющих четко зафиксированного ответа на каждый входящий объект. Это будет отличать их от классических алгоритмов, например реализующих сортировку или словарь.
    Читать дальше →
  • Небольшая библиотека для применения ИИ в Telegram чат-ботах

      Добрый день! На волне всеобщего интереса к чат-ботам в частности и системам диалогового интеллекта вообще я какое-то время занимался связанными с этой темой проектами. Сегодня я хотел бы выложить в опенсорс одну из написанных библиотек. Оговорюсь, что в первую очередь я специализируюсь на алгоритмических аспектах разработки и поэтому буду рад конструктивной критике решений кодерского характера от более сведущих в этом вопросе специалистов.


      Библиотека посвящена построению интерфейса между алгоритмом, возвращающим ответ на текстовый запрос и API мессенджера Telegram. Предназначена для гибкого применения алгоритмов машинного обучения.
      Читать дальше →
    • Как быстро написать и выкатить в продакшн алгоритм машинного обучения

      Сейчас анализ данных все шире используется в самых разных, зачастую далеких от ИТ, областях и задачи, стоящие перед специалистом на ранних этапах проекта радикально отличаются от тех, с которыми сталкиваются крупные компании с развитыми отделами аналитики. В этой статье я расскажу о том, как быстро сделать полезный прототип и подготовить простой API для его использования прикладным программистом.

      Для примера рассмотрим задачу предсказания цены на трубы размещенную на платформе для соревнований Kaggle. Описание и данные можно найти здесь. На самом деле на практике очень часто встречаются задачи в которых надо быстро сделать прототип имея очень небольшое количество данных, а то и вообще не имея реальных данных до момента первого внедрения. В этих случаях приходится подходить к задаче творчески, начинать с несложных эвристик и ценить каждый запрос или размеченный объект. Но в нашей модельной ситуации таких проблем, к счастью, нет и поэтому мы можем сразу начать с обзора данных, определения задачи и попыток применения алгоритмов.
      Читать дальше →
      • +11
      • 11.7k
      • 4