Pull to refresh
-1
0
Send message

Как работает рендеринг 3D-игр: текстурирование и фильтрация текстур

Reading time17 min
Views30K
image

В третьей статье о рендеринге в 3D-играх мы узнаем, что происходит с 3D-миром после завершения обработки вершин и растеризации сцены. Текстурирование — один из самых важных этапов рендеринга, несмотря на то, что на нём всего лишь вычисляются и изменяются цвета двухмерной сетки разноцветных блоков.

Большинство визуальных эффектов в современных играх сводится к продуманному использованию текстур — без них игры казались бы скучными и безжизненными. Так что давайте разберёмся, как всё это работает!

Часть 1: обработка вершин

Часть 2: растеризация и трассировка лучей

Начнём с простого


Можно взять любые трёхмерные игры-бестселлеры, выпущенные за последний год, и с уверенностью сказать, что все они имеют нечто общее: в них используются текстурные карты (или просто текстуры). Это настолько распространённый термин, что думая о текстурах, большинство людей представляет одинаковую картинку: простой плоский квадрат или прямоугольник, содержащий изображение поверхности (травы, камня, металла, ткани, лица и т.д.).

Но при многослойном использовании и комбинировании с помощью сложных вычислений такие простые изображения в 3D-сцене могут создавать поразительно реалистичные изображения. Чтобы понять, как такое возможно, давайте полностью их отключим и посмотрим, как будут выглядеть объекты 3D-мира без текстур.
Читать дальше →
Total votes 33: ↑33 and ↓0+33
Comments7

Как работает рендеринг 3D-игр: растеризация и трассировка лучей

Reading time18 min
Views31K
image

Часть 1: обработка вершин

В этой статье мы подробнее рассмотрим то, что происходит с 3D-миром после завершения обработки всех его вершин. Нам снова придётся стряхнуть пыль с учебников по математике, освоиться в геометрии пирамид усечения и решить загадку перспектив. Также мы ненадолго погрузимся в физику трассировки лучей, освещения и материалов.

Главная тема этой статьи — важный этап рендеринга, на котором трёхмерный мир точек, отрезков и треугольников становится двухмерной сеткой разноцветных блоков. Очень часто этот процесс кажется незаметным, потому что преобразование из 3D в 2D оказывается невидимым, в отличие от процесса, описанного в предыдущей статье, где мы сразу же могли увидеть влияние вершинных шейдеров и тесселяции. Если вы пока не готовы к этому, то можете начать с нашей статьи 3D Game Rendering 101.

Подготовка к двум измерениям


Подавляющее большинство читателей читают этот веб-сайт на совершенно плоском мониторе или экране смартфона; но даже если у вас есть современная техника — изогнутый монитор, то отображаемая им картинка тоже состоит из плоской сетки разноцветных пикселей. Тем не менее, когда вы играете в новую Call of Mario: Deathduty Battleyard, изображения кажутся трёхмерными. Объекты движутся по сцене, становятся больше или меньше, приближаясь и отдаляясь от камеры.
Читать дальше →
Total votes 24: ↑24 and ↓0+24
Comments5

Как работает рендеринг 3D-игр: обработка вершин

Reading time13 min
Views36K
image

В этом посте мы рассмотрим этап работы с вершинами. То есть нам придётся снова достать учебники по математике и вспомнить линейную алгебру, матрицы и тригонометрию. Ура!

Мы выясним, как преобразуются 3D-модели и учитываются источники освещения. Также мы подробно объясним разницу между вершинными и геометрическими шейдерами, и вы узнаете, на каком этапе находится место для тесселяции. Чтобы облегчить понимание, мы используем схемы и примеры кода, демонстрирующие, как в игре выполняются вычисления и обрабатываются значения.

На скриншоте в начале поста показана игра GTA V в каркасном (wireframe) режиме отображения. Сравните её с намного менее сложным каркасным отображением Half-Life 2. Изображения созданы thalixte при помощи ReShade.

Читать дальше →
Total votes 31: ↑31 and ↓0+31
Comments8

Information

Rating
Does not participate
Registered
Activity