Search
Write a publication
Pull to refresh
0
@Wanderer2014read⁠-⁠only

User

Send message

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas

Level of difficultyEasy
Reading time15 min
Views1.1M


Открытый курс машинного обучения mlcourse.ai сообщества OpenDataScience – это сбалансированный по теории и практике курс, дающий как знания, так и навыки (необходимые, но не достаточные) машинного обучения уровня Junior Data Scientist. Нечасто встретите и подробное описание математики, стоящей за используемыми алгоритмами, и соревнования Kaggle Inclass, и примеры бизнес-применения машинного обучения в одном курсе. С 2017 по 2019 годы Юрий Кашницкий yorko и большая команда ODS проводили живые запуски курса дважды в год – с домашними заданиями, соревнованиями и общим рейтингом учаcтников (имена героев запечатлены тут). Сейчас курс в режиме самостоятельного прохождения.

Читать дальше →

Топливо для ИИ: подборка открытых датасетов для машинного обучения

Reading time6 min
Views84K


Связанные проекты сообщества Open Data (проект Linked Open Data Cloud). Многие датасеты на этой диаграмме могут включать в себя данные, защищенные авторским правом, и они не упоминаются в данной статье


Если вы прямо сейчас не делаете свой ИИ, то другие будут делать его вместо вас для себя. Ничто более не мешает вам создать систему на основе машинного обучения. Есть открытая библиотека глубинного обучения TensorFlow, большое количество алгоритмов для обучения в библиотеке Torch, фреймворк для реализации распределенной обработки неструктурированных и слабоструктурированных данных Spark и множество других инструментов, облегчающих работу.


Добавьте к этому доступность больших вычислительных мощностей, и вы поймете, что для полного счастья не хватает лишь одного ингредиента — данных. Огромное количество данных находится в открытом доступе, однако непросто понять, на какие из открытых датасетов стоит обратить внимание, какие из них годятся для проверки идей, а какие могут быть полезны в качестве средства проверки потенциальных продуктов или их свойств до того, как вы накопите собственные проприетарные данные.


Мы разобрались в этом вопросе и собрали данные по датасетам, удовлетворяющим критериям открытости, востребованности, скорости работы и близости к реальным задачам.

Читать дальше →

Не держите людей за идиотов или почему человек с инженерным образованием может сжечь вышку сотовой связи (видео)

Reading time12 min
Views224K


Знаете что общего между ситуацией с уничтожением антенн сотовой связи и последней лентой Тарантино «Однажды в Голливуде»? Они оба делят людей на два противоположных лагеря.
Читать дальше →

Разбираемся с войной нейронных сетей (GAN)

Reading time7 min
Views40K
Generative adversarial networks (GAN) пользуются все большей популярностью. Многие говорят о них, кто-то даже уже использует… но, как выясняется, пока мало кто (даже из тех кто пользуется) понимает и может объяснить. ;-)
Давайте разберем на самом простом примере, как же они работают, чему учатся и что на самом деле порождают.
Читать дальше →

Фальшивомонетчики против банкиров: стравливаем adversarial networks в Theano

Reading time13 min
Views35K
image
Вы бы никогда не подумали, но это прогулка по пространству нейросети-фальшивомонетчика. Сделано крутейшими людьми Anders Boesen Lindbo Larsen и Søren Kaae Sønderby

Допустим, у нас есть задача — понять окружающий мир.
Давайте для простоты представим, что мир — это деньги.

Метафора, может быть, с некоторой моральной двусмысленностью, но в целом пример не хуже прочих — деньгам (банкнотам) определенно свойственна какая-то сложная структура, тут у них цифра, тут буква, а там хитрые водяные знаки. Предположим, нам нужно понять, как они сделаны, и узнать правило, по которым их печатают. Какой план?

Напрашивающийся шаг — это пойти в офис центрального банка и попросить их выдать спецификацию, но во-первых, вам ее не дадут, а во-вторых, если выдерживать метафору, то у вселенной нет центрального банка (хотя на этот счет есть религиозные разногласия).

Ну, раз так, давайте попробуем их подделать.
Осторожно, тяжелые гифки

Deep Learning и OpenVINO Toolkit. Задайте вопрос эксперту Intel

Reading time2 min
Views2.6K


Сентябрь — традиционное время для рубрики «Задайте вопрос эксперту Intel»; в прошлый раз она имела место быть ровно год назад. И это не случайно. В сентябре мы возвращаемся в работу после летнего отдыха, полные идей и желания узнать что-то новое — значит, самое время пообщаться с людьми, которые это новое и создают. В этот раз у нас на проводе Юрий Горбачев, главный архитектор Intel OpenVINO Toolkit — набора библиотек, средств оптимизации и информационных ресурсов для разработки софта, использующего машинное зрение и Deep Learning.
Да, именно про Deep Learning и OpenVINO Toolkit у нас и пойдет разговор. А чтобы он получился интересным и содержательным, присылайте свои вопросы — все, что хотите знать именно вы. Вопросы принимаются до 16 сентября включительно. Автор лучшего вопроса получит приз от Intel (приз доставляется из Москвы в пределах РФ).
Читать дальше →

OpenVINO Toolkit — чтобы смотреть на мир незатуманенным взглядом

Reading time2 min
Views16K


Буквально вчера увидела свет новая версия Open Visual Inference & Neural Network Optimization (OpenVINO) toolkit (ранее Intel Computer Vision SDK) — набора библиотек, средств оптимизации и информационных ресурсов для разработки софта, использующего машинное зрение и Deep Learning. Цель OpenVINO — ускорить процесс создания систем компьютерного зрения, предоставляя программистам интегрированную среду разработки, а также оптимизировать код этих продуктов, требующий больших вычислительных затрат, под разнообразные аппаратные платформы (CPU, GPU, FPGA) Intel.

Под катом — полный список компонентов OpenVINO Toolkit, перечень совместимого железа и полезные ссылки.
Читать дальше →

Deep Learning, теперь и в OpenCV

Reading time13 min
Views67K


Данная статья является кратким обзором возможностей dnn — модуля OpenCV, предназначенного для работы с нейросетями. Если вам интересно, что это такое, что оно умеет и как быстро работает, добро пожаловать под кат.
Читать дальше →

Вижу, значит существую: обзор Deep Learning в Computer Vision (часть 2)

Reading time18 min
Views43K
Продолжаем постигать современную магию (компьютерное зрение). Часть 2 не значит, что нужно сначала читать часть 1. Часть 2 значит, что теперь всё серьёзно — мы хотим понять всю мощь нейросетей в зрении. Детектирование, трекинг, сегментация, оценка позы, распознавание действий… Самые модные и крутые архитектуры, сотни слоёв и десятки гениальных идей уже ждут вас под катом!


Читать дальше →

Вижу, значит существую: обзор Deep Learning в Computer Vision (часть 1)

Reading time17 min
Views31K
Компьютерное зрение. Сейчас о нём много говорят, оно много где применяется и внедряется. И как-то давненько на Хабре не выходило обзорных статей по CV, с примерами архитектур и современными задачами. А ведь их очень много, и они правда крутые! Если вам интересно, что сейчас происходит в области Computer Vision не только с точки зрения исследований и статей, но и с точки зрения прикладных задач, то милости прошу под кат. Также статья может стать неплохим введением для тех, кто давно хотел начать разбираться во всём этом, но что-то мешало ;)

image
Читать дальше →

Книга «Прагматичный ИИ. Машинное обучение и облачные технологии»

Reading time15 min
Views4.7K
image Привет, Хаброжители! Эта книга Ноя Гифта предназначена для всех, кого интересуют ИИ, машинное обучение, облачные вычисления, а также любое сочетание данных тем. Как программисты, так и просто неравнодушные технари найдут тут для себя полезную информацию. Примеры кода даны на Python. Здесь рассматривается множество столь продвинутых тем, как использование облачных платформ (например, AWS, GCP и Azure), а также приемы машинного обучения и реализация ИИ. Джедаи, свободно ориентирующиеся в Python, облачных вычислениях и ML, также найдут для себя много полезных идей, которые смогут сразу применить в своей текущей работе.

Предлагаем ознакомиться с отрывком из книги «Создание интеллектуального бота Slack в AWS»
Читать дальше →

Книга «Машинное обучение и TensorFlow»

Reading time7 min
Views16K
image Знакомство с машинным обучением и библиотекой TensorFlow похоже на первые уроки в автошколе, когда вы мучаетесь с параллельной парковкой, пытаетесь переключить передачу в нужный момент и не перепутать зеркала, лихорадочно вспоминая последовательность действий, в то время как ваша нога нервно подрагивает на педали газа. Это сложное, но необходимое упражнение. Так и в машинном обучении: прежде чем использовать современные системы распознавания лиц или алгоритмы прогнозирования на фондовом рынке, вам придется разобраться с соответствующим инструментарием и набором инструкций, чтобы затем без проблем создавать собственные системы.

Новички в машинном обучении оценят прикладную направленность этой книги, ведь ее цель — познакомить с основами, чтобы затем быстро приступить к решению реальных задач. От обзора концепций машинного обучения и принципов работы с TensorFlow, вы перейдете к базовым алгоритмам, изучите нейронные сети и сможете самостоятельно решать задачи классификации, кластеризации, регрессии и прогнозирования.
Читать дальше →

Грокаем PyTorch

Reading time10 min
Views20K
Привет, Хабр!

У нас в предзаказе появилась долгожданная книга о библиотеке PyTorch.



Поскольку весь необходимый базовый материал о PyTorch вы узнаете из этой книги, мы напоминаем о пользе процесса под названием «grokking» или «углубленное постижение» той темы, которую вы хотите усвоить. В сегодняшней публикации мы расскажем, как Кай Арулкумаран (Kai Arulkumaran) грокнул PyTorch (без картинок). Добро пожаловать под кат.
Читать дальше →

Что такое свёрточная нейронная сеть

Reading time13 min
Views272K


Введение


Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря им выиграл конкурс ImageNet (грубо говоря, это ежегодная олимпиада по машинному зрению), снизив рекорд ошибок классификации с 26% до 15%, что тогда стало прорывом. Сегодня глубинное обучения лежит в основе услуг многих компаний: Facebook использует нейронные сети для алгоритмов автоматического проставления тегов, Google — для поиска среди фотографий пользователя, Amazon — для генерации рекомендаций товаров, Pinterest — для персонализации домашней страницы пользователя, а Instagram — для поисковой инфраструктуры.


Но классический, и, возможно, самый популярный вариант использования сетей это обработка изображений. Давайте посмотрим, как СНС используются для классификации изображений.


Задача


Задача классификации изображений — это приём начального изображения и вывод его класса (кошка, собака и т.д.) или группы вероятных классов, которая лучше всего характеризует изображение. Для людей это один из первых навыков, который они начинают осваивать с рождения.


Читать дальше →

Погружение в свёрточные нейронные сети: передача обучения (transfer learning)

Reading time37 min
Views20K

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.


Читать дальше →

Развертывание модели глубокого обучения Keras в виде веб-приложения на Python

Reading time8 min
Views9.9K
Перевод статьи подготовлен специально для студентов курса «Web-разработчик на Python».




Создать классный проект с машинным обучением – это одно дело, другое дело, когда вам нужно, чтобы другие люди тоже смогли его увидеть. Конечно, вы можете положить весь проект на GitHub, но как ваши бабушка с дедушкой поймут, что вы сделали? Нет, нам нужно развернуть нашу модель глубокого обучения в виде веб-приложения, которое будет доступно любому человеку в мире.

В этой статье мы узнаем, как написать веб-приложение, которое использует обученную рекуррентную нейронную сеть Keras и позволяет пользователям создавать новые патентные аннотации. Этот проект основан на работе из статьи «Recurrent Neural Networks by Example», однако знать, как строится RNN сейчас совсем не обязательно. На данный момент мы просто будем рассматривать ее как черный ящик: мы задаем начальную последовательность, и она выводит совершенно новую аннотацию к патенту, которую можно просмотреть в браузере!
Читать дальше →
12 ...
26

Information

Rating
Does not participate
Registered
Activity