User
Освоение любой темы с помощью искусственного интеллекта и метода Фейнмана
Когда в последний раз вы сталкивались с трудной для понимания темой? Или проводили часы за просмотром обучающих видео на YouTube?
Существует множество эффективных методик обучения, позволяющих усвоить сложные концепции и обрести уверенность в своих знаниях. Если вы, как и я, постоянно стремитесь к саморазвитию, то понимаете важность правильного подхода к обучению. Одним из наиболее простых и действенных методов является техника Фейнмана.
В этой статье я расскажу, как эффективно применять метод Фейнмана и использовать искусственный интеллект для восполнения пробелов в знаниях.
По окончании чтения вы научитесь использовать ChatGPT для разбора сложных концепций и их интуитивного освоения всего за четыре простых шага.
Торговые роботы на Golang
Трейдеры на финансовом рынке обрабатывают большие объемы информации и принимают решения максимально быстро, чтобы не упустить возможность и избежать рисков. Получить преимущество можно, если умеешь хотя бы немного программировать. Это особенно важно там, где время — деньги.
Я Александр Парфенов, бэкенд-разработчик в Тинькофф Инвестициях и автор InvestAPI SDK для языка Go. Расскажу о том, как автоматизировать торговые стратегии при помощи Tinkoff INVEST API и языка Go.
Как ускорить работу микросервиса с помощью многопоточности, асинхронности и кэша: пошаговая инструкция (FastApi, Redis)
Микросервисная архитектура звучит неплохо само по себе, но еще лучше — быстрый микросервис, который эффективно использует ресурсы сервера.
Я покажу, как последовательно применять к простому без затей микросервису методы ускорения его работы, попутно рассматривая плюсы и минусы каждого из них.
Как устроен рекомендательный сервис, который выдерживает 700 тысяч запросов в секунду. Доклад Яндекса
«Баннерная крутилка» — один из самых высоконагруженных сервисов в Яндексе. Он умеет переживать 700 тысяч RPS, а иногда и больше. Каждый раз, когда приходит запрос, крутилка должна просмотреть базу из миллиарда документов и выбрать из них самые релевантные для пользователя. При этом выдерживаются весьма жесткие временные рамки: 99% всех запросов обрабатываются менее чем за 200 миллисекунд.
Какими принципами стоит руководствоваться при построении подобных высоконагруженных систем? Как устроены стадии отбора документов? Какое участие в ранжировании принимает ML? Обо всём этом на недавнем мероприятии для разработчиков в Ереване рассказал Артём Ваншулин, руководитель разработки ранжирования в команде баннерной системы. Сегодня мы делимся с сообществом текстовой версией его доклада. Передаём ему слово.
RAG (Retrieval Augmented Generation) — простое и понятное объяснение
Краткое и понятное описание подхода RAG (Retrieval Augmented Generation) при работе с большими языковыми моделями.
LlamaIndex: создаем чат-бота без боли и страданий. Часть 3
Завершаем исследование фреймворка llamaIndex. В этой части разбираемся с ретриверами, которые обеспечивают различные способы извлечения релевантного контекста из индексов документов.
LangChain для бывалых: память и агенты. часть 1
В своей предыдущей статье я написал о многообещающем фреймворке LangChain. Туториал был достаточно коротким; удалось охватить только самые базовые концепции проекта (и то не все). В этой части предстоит более глубокое погружение. Разберемся, как можно добавить память в диалоги с LLM, а также задействуем мощь агентов.
SSH и удалённые git-репозитории
В этой статье речь пойдёт о том, как при помощи протокола ssh удобно и безопасно работать с удалёнными git-репозиториями.
Анализ зависимостей бинарных файлов на основе ML. Заключительная часть
В прошлой статье мы разобрали идею нашего компонентного анализатора и поделились результатами некоторых экспериментов, проведенных в лабораторных условиях. Результаты, полученные на маленькой части датасета в размере 3000 библиотек, вышли довольно оптимистичными. В этой статье опишем сложности, с которыми мы столкнулись при попытках применить решение на ~105к библиотек, и расскажем, как с ними справлялись.
Анализ зависимостей бинарных файлов на основе ML
Всем привет! ? ? ? Мы стажеры-разработчики Тинькофф: Влад, Паша и Илья. В проекте по стажировкам в ИБ Summer of Code под руководством Ромы Лебедя мы реализовали анализатор бинарного кода на основе ML-подходов — Binary SCA. Наш проект совмещает две предметные области — информационную безопасность и ML, поэтому мы разделили статью на несколько частей.
В этой статье подробно расскажем о ML-стороне проекта: проведенные исследования, сложности, с которыми столкнулись в ходе работы, какой результат получили. В этой части делимся опытом использования Rizin и Milvus. Добро пожаловать!
Что не увидит SCA
Всем привет! ? ? ? Мы стажеры — разработчики Тинькофф: Влад, Паша и Илья. В проекте по стажировкам в ИБ Summer of Code под руководством Ромы Лебедя мы реализовали анализатор бинарного кода на основе ML-подходов — Binary SCA. Наш проект совмещает две предметные области — информационную безопасность и ML, поэтому мы разделили статью на несколько частей.
В статье поговорим о подходах к компонентному анализу и почему нам не подошел ни один из них. Расскажем, зачем мы разработали свое решение и что означает аббревиатура SCAML.
Машинное обучение: с чего начать или как построить первую модель
В качестве первой задачи для машинного обучения возьмем что-то понятное и простое, например, прогноз стоимости жилья. Готовый датасет можно найти на сайте kaggle. На первых шагах обучения не стоит брать датасеты с большим количеством переменных, например, «House Prices: Advanced Regression Techniques» состоит из 80 переменных и advanced regression, остановимся на «House Sales in King County, USA» с 21 параметром. Скачиваем данные и анализируем предоставленное описание. В наличии дата, цена, количество спален, ванных комнат, общая и жилая площадь, этажность, оценка вида, вид на море, оценка общего состояния, грейд (оценка строительства и дизайна), площадь над и под уровнем земли, год постройки, год последнего ремонта, код зоны, координаты (долгота и широта), данные о площади домов 15 соседей.
Итак, мы выбрали задачу и готовы приступить к ее решению. Решение будет включать два этапа: анализ данных и построение моделей.
1. Работа с данными.
Сделаем отступление и отдельно отметим важность анализа данных. В настоящий момент все более-менее популярные алгоритмы уже написаны в виде библиотек и непосредственное построение модели сводится к нескольким строкам кода, например, k-ближайших соседей из sklearn в python:
Information
- Rating
- Does not participate
- Registered
- Activity