Search
Write a publication
Pull to refresh
6
0

Пользователь

Send message

Преобразование Фурье в действии: точное определение частоты сигнала и выделение нот

Reading time12 min
Views236K
последняя редакция статьи доступна на сайте makeloft.xyz

Начнём с пианино. Очень упрощёно этот музыкальный инструмент представляет собой набор белых и чёрных клавиш, при нажатии на каждую из которых извлекается определённый звук заранее заданной частоты от низкого до высокого. Конечно, каждый клавишный инструмент имеет свою уникальную тембральную окраску звучания, благодаря которой мы можем отличить, например, аккордеон от фортепиано, но если грубо обобщить, то каждая клавиша представляет собой просто генератор синусоидальных акустических волн определённой частоты.

Когда музыкант играет композицию, то он поочерёдно или одновременно зажимает и отпускает клавиши, в результате чего несколько синусоидальных сигналов накладываются друг на друга образуя рисунок. Именно этот рисунок воспринимается нами как мелодия, благодаря чему мы без труда узнаём одно произведение, исполняемое на различных инструментах в разных жанрах или даже непрофессионально напеваемое человеком.

image

Читать дальше →

Алгоритмы сегментации текста

Reading time4 min
Views15K
Здравствуйте.

В контексте анализа данных из твиттера возникла задача обработки хештегов. Нужно было взять хештег и разбить его на отдельные слова (#habratopic => habra topic). Задача казалась примитивной, но, получается, я ее недооценил. Пришлось перебрать несколько алгоритмов пока не было найдено то, что надо.

Эту статью можно считать некой хронологией решения задачи с анализом преимуществ и недостатков каждого из использованных алгоритмов. Поэтому, если вам интересна данная тема, прошу под кат.

Читать дальше →

Deep Learning, NLP, and Representations

Reading time13 min
Views63K
Предлагаю читателям «Хабрахабра» перевод поста «Deep Learning, NLP, and Representations» крутого Кристофера Олаха. Иллюстрации оттуда же.

В последние годы методы, использующие глубокое обучение нейросетей (deep neural networks), заняли ведущее положение в распознавании образов. Благодаря им планка для качества методов компьютерного зрения значительно поднялась. В ту же сторону движется и распознавание речи.

Результаты результатами, но почему они так круто решают задачи?



В посте освещено несколько впечатляющих результатов применения глубоких нейронных сетей в обработке естественного языка (Natural Language Processing; NLP). Таким образом я надеюсь доходчиво изложить один из ответов на вопрос, почему глубокие нейросети работают.
Вглубь по кроличьей норе

Лекции Технопарка: мастер-класс Алексея Рыбака «Про то, что я бы хотел, чтобы мне рассказали, пока я учился»

Reading time25 min
Views47K
Сегодня мы начинаем серию публикаций новых мастер-классов Технопарка. И первая из них — мастер-класс Алексея Рыбака на свободную тему, в котором он поделился со студентами соображениями о том, чем работа в реальной жизни отличается от учебы. Видео смотрите на нашем сайте, а адаптированную расшифровку — ниже.

Я работаю в компании Badoo достаточно долго, и на моих глазах этот проект из маленького стартапа превратился в большую компанию с сотнями инженеров и тысячным парком серверов, распределенных по нескольким дата-центрам. Сейчас я хотел бы рассказать о том, что считаю достаточно интересным для студентов, выбравших профессию программиста.

Не буду рассказывать о современных трендах и о том сегодня важно и нужно — об этом вам многие могут рассказать. Вместо этого поговорим о некой общечеловеческой адаптации бывших студентов к работе, которую каждый человек проходит в течение одного, а порой и нескольких лет. Процесс этот достаточно болезненный, и далеко не все «правильно» проходят эту адаптацию. Именно эта тема должна больше интересовать студентов и выпускников, чем какие-то модные технологические фишки. Хотя о них мы тоже поговорим, когда коснемся темы самообразования.


Читать дальше →

Аппаратное обеспечение для глубокого обучения

Reading time3 min
Views18K
Глубокое обучение — процесс, требующий больших вычислительных мощностей. Конечно, нет ничего хорошего в том, чтобы тратить деньги на покупку аппаратного обеспечения с обложки журнала, которое потом полетит на помойку. Нужно подходить к этому делу с умом.

Попробуем взглянуть на примеры аппаратных решений, связанные с работой по осваиванию темы deep learning'а. Ну и затронем немного теории.

Читать дальше →

Что нам стоит сеть построить

Reading time8 min
Views60K
Когда пользуешься сложными алгоритмами для решения задач компьютерного зрения — нужно знать основы. Незнание основ приводит к глупейшим ошибкам, к тому, что система выдаёт неверифицируемый результат. Используешь OpenCV, а потом гадаешь: «может, если сделать всё специально под мою задачу ручками было бы сильно лучше?». Зачастую заказчик ставит условие «сторонних библиотек использовать нельзя», или, когда работа идёт для какого-нибудь микроконтроллера, — всё нужно прогать с нуля. Вот тут и приходит облом: в обозримые сроки реально что-то сделать, только зная как работают основы. При этом чтения статей зачастую не хватает. Прочитать статью про распознавание номеров и попробовать самому такое сделать — огромная пропасть. Поэтому лично я стараюсь периодически писать какие-нибудь простенькие программки, включающие в себя максимум новых и неизвестных для меня алгоритмов + тренирующих старые воспоминания. Рассказ — про один из таких примеров, который я написал за пару вечеров. Как мне показалось, вполне симпатичный набор алгоритмов и методов, позволяющий достичь простенького оценочного результата, которого я ни разу не видел.



Сидя вечером и страдая от того, что нужно сделать что-то полезное, но не хочется, я наткнулся на очередную статью по нейросетям и загорелся. Нужно сделать наконец-таки свою нейросеть. Идея банальная: все любят нейросети, примеров с открытым кодом масса. Мне иногда приходилось пользоваться и LeNet и сетями из OpenCV. Но меня всегда настораживало, что их характеристики и механику я знаю только по бумажкам. А между знанием «нейросети обучаются методом обратного распространения» и пониманием того, как это сделать пролегает огромная пропасть. И тогда я решился. Пришло время, чтобы 1-2 вечера посидеть и сделать всё своими руками, разобраться и понять.
Читать дальше →

Недостатки чистого функционального программирования

Reading time8 min
Views40K
От автора: перевод статьи «Функциональное программирование непопулярно, потому что оно странное» вызвал бурное обсуждение. В нескольких комментариях весьма справедливо замечалось, что при обсуждении недостатков функционального программирования хорошо бы опираться на современные и развитые функциональные языки (в оригинальной статье примеры были на шаблонах C++) и что Хаскель, например, последние пять лет широко используется в индустрии. В связи с этим я хотел бы обратить внимание на две очень предметные статьи из другого блога (от автора книги F# for Scientists): (i) "Недостатки чистого функционального программирования" и (ii) "Почему Хаскель так мало используется в индустрии". Перевод первой из них я как раз и хотел бы представить ниже.

1. На чистых функциональных языках не существует эффективного неупорядоченного словаря и множества


Читать дальше →

Что такое пространство-время на самом деле?

Reading time22 min
Views122K

Перевод поста Стивена Вольфрама "What Is Spacetime, Really?".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.


Примечание: данный пост Стивена Вольфрама неразрывно связан с теорией клеточных автоматов и других смежных понятий, а также с его книгой A New Kind of Science (Новый вид науки), на которую из этой статьи идёт большое количество ссылок. Пост хорошо иллюстрирует применение программирования в научной сфере, в частности, Стивен показывает (код приводится в книге) множество примеров программирования на языке Wolfram Language в области физики, математики, теории вычислимости, дискретных систем и др.

Содержание


Простая теория всего?
Структура данных Вселенной
Пространство как граф
Может быть, нет ничего, кроме пространства
Что есть время?
Формирование сети
Вывод СТО
Вывод ОТО (Общей теории относительности)
Частицы, квантовая механика и прочее
В поисках вселенной
Ок, покажите мне Вселенную
Заниматься физикой или нет — вот в чем вопрос
Что требуется?
Но пришло ли время?
Сто лет назад Альберт Эйнштейн опубликовал общую теорию относительности — блестящую, элегантную теорию, которая пережила целый век и открыла единственный успешный путь к описанию пространства-времени (пространственно-временного континуума).

Есть много различных моментов в теории, указывающих, что общая теория относительности — не последняя точка в истории о пространстве-времени. И в самом деле, пускай мне нравится ОТО как абстрактная теория, однако я пришел к мысли, что она, возможно, на целый век увела нас от пути познания истинной природы пространства и времени.

Я размышлял об устройстве пространства и времени немногим более сорока лет. В начале, будучи молодым физиком-теоретиком, я просто принимал эйнштейновскую математическую постановку задачи специальной и общей теории относительности, а так же занимался некоторой работой в квантовой теории поля, космологии и других областях, основываясь на ней.

Но около 35 лет назад, отчасти вдохновленный своим опытом в технических областях, я начал более детально исследовать фундаментальные вопросы теоретической науки, с чего и начался мой длинный путь выхода за рамки традиционных математических уравнений и использования вместо них вычислений и программ как основных моделей в науке. Вскоре после этого мне довелось выяснить, что даже очень простые программы могут демонстрировать очень сложное поведение, а затем, спустя годы, я обнаружил, что системы любого вида могут быть представлены в терминах этих программ.

Воодушевившись этим успехом, я стал размышлять, может ли это иметь отношение к важнейшему из научных вопросов — физической теории всего.

Во-первых, такой подход казался не слишком перспективным — хотя бы потому, что модели, которые я изучал (клеточные автоматы), казалось, работали так, что это полностью противоречило всему тому, что я знал из физики. Но где-то в 88-м году — в то время, когда вышла первая версия Mathematica, я начал понимать, что если бы я изменил свои представления о пространстве и времени, возможно, это к чему то бы меня привело.
Подробнее о пространственно-временном континууме...

Распутывая историю Ады Лавлейс (первого программиста в истории)

Reading time43 min
Views84K

Перевод поста Стивена Вольфрама "Untangling the Tale of Ada Lovelace".
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации.

Содержание


Ранние годы Ады
Чарльз Бэббидж
Уровень развития этой области
Возвращаемся к Аде
Возвращаясь к Бэббиджу
Статья Ады
После статьи
После смерти Ады
Что стало с Бэббиджем?
Повторное открытие
О чем на самом деле писала Ада
Вычисление чисел Бернулли
Бэббидж vs. Ада?
Секретный ингредиент Бэббиджа
В большем масштабе
А что, если...
Какими они были?
Заключение
Ада Лавлейс родилась 200 лет назад. Для некоторых она является знаменательной фигурой в истории вычислительной техники; для других — изрядно переоцененной личностью. В течение долгого времени я пытался разобраться, как всё было на самом деле. И вот, к её двухсотлетию, я решил разобраться в том, что называл для себя "тайной Ады".

Получилось намного сложнее, чем я ожидал. Историки расходятся во мнениях. Личности в истории сложно изучать. Технологии трудно понять. Вся история переплетается с обычаями 19-го века британского высшего общества. И есть удивительное количество ошибочных сведений и неверных трактовок.

Но после некоторого исследования, в том числе просмотра большого количества оригинальных документов, я чувствую, что я, наконец, понял, кто есть Ада Лавлейс, и какова ее история. Эта история полна как увлекательных, захватывающих моментов, так и трагичных, разочаровывающих.

Это сложная история, и чтобы в ней разобраться, нужно будет о многом рассказать.
Подробнее об Аде Лавлейс...

Deconvolutional Neural Network

Reading time9 min
Views62K
Использование классических нейронных сетей для распознавания изображений затруднено, как правило, большой размерностью вектора входных значений нейронной сети, большим количеством нейронов в промежуточных слоях и, как следствие, большими затратами вычислительных ресурсов на обучение и вычисление сети. Сверточным нейронным сетям в меньшей степени присущи описанные выше недостатки.

Свёрточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном и нацеленная на эффективное распознавание изображений, входит в состав технологий глубокого обучения (англ. deep leaning). Эта технология построена по аналогии с принципами работы зрительной коры головного мозга, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого набора простых клеток. Таким образом, идея сверточных нейронных сетей заключается в чередовании сверточных слоев (англ. convolution layers) и субдискретизирующих слоев (англ. subsampling layers, слоёв подвыборки).[6]

image
Рис 1. Архитектура сверточной нейронной сети

Ключевым моментом в понимании сверточных нейронных сетей является понятие так называемых «разделяемых» весов, т.е. часть нейронов некоторого рассматриваемого слоя нейронной сети может использовать одни и те же весовые коэффициенты. Нейроны, использующие одни и те же веса, объединяются в карты признаков (feature maps), а каждый нейрон карты признаков связан с частью нейронов предыдущего слоя. При вычислении сети получается, что каждый нейрон выполняет свертку (операцию конволюции) некоторой области предыдущего слоя (определяемой множеством нейронов, связанных с данным нейроном). Слои нейронной сети, построенные описанным образом, называются сверточными слоями. Помимо, сверточных слоев в сверточной нейронной сети могут быть слои субдискретизации (выполняющие функции уменьшения размерности пространства карт признаков) и полносвязные слои (выходной слой, как правило, всегда полносвязный). Все три вида слоев могут чередоваться в произвольном порядке, что позволяет составлять карты признаков из карт признаков, а это на практике означает способность распознавания сложных иерархий признаков [3].

Что же именно влияет на качество распознавания образов при обучении сверточных нейронных сетей? Озадачившись данным вопросом, наткнулись на статью Мэттью Зайлера (Matthew Zeiler).
Читать дальше →

Библиотека машинного обучения Google TensorFlow – первые впечатления и сравнение с собственной реализацией

Reading time10 min
Views31K
Coвсем недавно Google сделал доступной для всех свою библиотеку для машинного обучения, под названием TensorFlow. Для нас это оказалось интересно еще и тем, что в состав входят самые современные нейросетевые модели для обработки текста, в частности, обучения типа “последовательность-в-последовательность” (sequence-to-sequence learning). Поскольку у нас есть несколько проектов, связанных с этой технологией, то мы решили, что это отличная возможность перестать изобретать велосипед (наверное пора уже) и быстро улучшить результаты. Представив себе довольные лица клиентов, мы приступили к работе. И вот что из этого получилось…
Читать дальше →

TensorFlow: машинное обучение от Google, теперь – умнее и для всех

Reading time2 min
Views61K
Всего-то пару лет назад мы не могли общаться с приложениями Google сквозь уличный шум, не переводили русские надписи в Google Translate и не искали фото того самого лабрадудля в Google Photos, только лишь о нём услышав. Дело в том, что наши приложения были тогда недостаточно умны. Что ж, очень быстро они стали значительно, значительно умнее. Сегодня, благодаря технологии машинного обучения, все эти замечательные штуки, равно как и многое другое и более серьёзное, мы можем делать играючи.

В общем, встречайте: мы создали принципиально новую систему машинного обучения по имени TensorFlow. TensorFlow быстрее, умнее и гибче в сравнении с нашей предыдущей технологией (DistBelief, с 2011, та самая, что распознавала кошку без учителя), благодаря чему стало значительно проще адаптировать её к использованию в новых продуктах и исследовательских проектах. TensorFlow – высокомасштабируемая система машинного обучения, способная работать как на простом смартфоне, так и на тысячах узлов в центрах обработки данных. Мы используем TensorFlow для всего спектра наших задач, от распознавания речи до автоответчика в Inbox и поиска в Google Photos. Такая гибкость позволяет нам конструировать и тренировать нейросетки до 5 раз быстрее в сравнении с нашей старой платформой, так что мы действительно можем использовать новую технологию значительно оперативнее.

image

Читать дальше →

Перцептрон Розенблатта — что забыто и придумано историей?

Reading time4 min
Views28K
На хабре — уже есть несколько статей про искусственные нейронные сети. Но чаще говорят о т.н. многослойном перцептроне и алгоритме обратного распространения ошибки. А знаете те ли Вы что эта вариация ничем не лучше элементарного перцептрона Розенблатта?

Например, вот в этом переводе Что такое искусственные нейронные сети? мы можем увидеть, что о перцептроне Розенблатта пишут такое:

Демонстрация персептона Розенблатта показала, что простые сети из таких нейронов могут обучаться на примерах, известных в определенных областях. Позже, Минский и Паперт доказали, что простые пресептоны могут решать только очень узкий класс линейно сепарабельных задач, после чего активность изучения ИНС уменьшилась. Тем не менее, метод обратного распространения ошибки обучения, который может облегчить задачу обучения сложных нейронных сетей на примерах, показал, что эти проблемы могут быть и не сепарабельными.


Причем это встречается на разный лад в различных статьях, книгах и даже учебниках.

Но это, наверно, самая великая реклама в области ИИ. А в науке это называется фальсификация.

Читать дальше →

Поиск работы за рубежом: дайджест полезных материалов для потенциальных ИТ-экспатов

Reading time4 min
Views59K


Вопрос о поиске работы за границей при нынешней нестабильной экономической ситуации в России стоит перед многими ИТ-специалистами довольно остро. Недавний опрос мэрии Иннополиса и рекрутингового портала HeadHunter показал, что около 13% российских ИТ-спецалистов готовы стать «трудовыми мигрантами». Но так ли просто найти работу за рубежом и настолько ли «там» все лучше, чем «здесь» — чтобы с этим разобраться я изучил много интересных материалов. Свое мнение афишировать не буду, лучше поделюсь полезным дайджестом материалов о поиске работы в разных странах и решения возникающих по ходу дела задач и вопросов.
Читать дальше →

Простыми словами о преобразовании Фурье

Level of difficultyMedium
Reading time14 min
Views1.1M
Я полагаю что все в общих чертах знают о существовании такого замечательного математического инструмента как преобразование Фурье. Однако в ВУЗах его почему-то преподают настолько плохо, что понимают как это преобразование работает и как им правильно следует пользоваться сравнительно немного людей. Между тем математика данного преобразования на удивление красива, проста и изящна. Я предлагаю всем желающим узнать немного больше о преобразовании Фурье и близкой ему теме того как аналоговые сигналы удается эффективно превращать для вычислительной обработки в цифровые.

image (с) xkcd

Без использования сложных формул и матлаба я постараюсь ответить на следующие вопросы:
  • FT, DTF, DTFT — в чем отличия и как совершенно разные казалось бы формулы дают столь концептуально похожие результаты?
  • Как правильно интерпретировать результаты быстрого преобразования Фурье (FFT)
  • Что делать если дан сигнал из 179 сэмплов а БПФ требует на вход последовательность по длине равную степени двойки
  • Почему при попытке получить с помощью Фурье спектр синусоиды вместо ожидаемой одиночной “палки” на графике вылезает странная загогулина и что с этим можно сделать
  • Зачем перед АЦП и после ЦАП ставят аналоговые фильтры
  • Можно ли оцифровать АЦП сигнал с частотой выше половины частоты дискретизации (школьный ответ неверен, правильный ответ — можно)
  • Как по цифровой последовательности восстанавливают исходный сигнал


Я буду исходить из предположения что читатель понимает что такое интеграл, комплексное число (а так же его модуль и аргумент), свертка функций, плюс хотя бы “на пальцах” представляет себе что такое дельта-функция Дирака. Не знаете — не беда, прочитайте вышеприведенные ссылки. Под “произведением функций” в данном тексте я везде буду понимать “поточечное умножение”

Итак, приступим?

Подглядываем за метаниями нейронной сети

Reading time8 min
Views32K


В комментариях к моей предыдущей статье о происходящем в нейронной сети проскользнула фраза, что, к сожалению, визуализация процессов обучения редко бывает возможна на реальных задачах с большими данными. Действительно очень жаль. Давайте же попытаемся это исправить. Под катом я предлагаю простую и, как ни удивительно, информативную визуализацию процесса обучения нейронной сети, не зависящую ни от характера задачи, ни от свойств самой сети, то есть доступную для сколь угодно сложной задачи.
Читать дальше, с картинками

Производящие функции — туда и обратно

Reading time9 min
Views108K
«Производящая функция является устройством, отчасти напоминающим мешок. Вместо того чтобы нести отдельно много предметов, что могло бы оказаться затруднительным, мы собираем их вместе, и тогда нам нужно нести лишь один предмет — мешок».
                                                                                                                                                               Д. Пойа

Введение


Математика делится на два мира — дискретный и непрерывный. В реальном мире есть место и для того и для другого, и часто к изучению одного явления можно подойти с разных сторон. В этой статье мы рассмотрим метод решения задач с помощью производящих функций — мостика ведущего из дискретного мира в непрерывный, и наоборот.

Идея производящих функций достаточно проста: сопоставим некоторой последовательности <g0, g1, g2, ..., gn> — дискретному объекту, степенной ряд g0 + g1z + g2z2 +… + gnzn +… — объект непрерывный, тем самым мы подключаем к решению задачи целый арсенал средств математического анализа. Обычно говорят, последовательность генерируется, порождается производящей функцией. Важно понимать, что это символьная конструкция, то есть вместо символа z может быть любой объект, для которого определены операции сложения и умножения.
Читать дальше →

Правильно освобождаем ресурсы в Java

Reading time4 min
Views165K
Неправильное освобождение ресурсов — одна из наиболее часто допускаемых ошибок среди Java-программистов. Под ресурсом в данной статье я буду подразумевать всё, что реализует интерфейс java.io.Closeable. Итак, сразу к делу.

Будем рассматривать на примере OutputStream. Задача: получить на вход OutputStream, сделать некоторую полезную работу с ним, закрыть OutputStream.
Читать дальше →

Правильное использование исключений в Java

Reading time3 min
Views123K
Доброго времени суток, уважаемый Хабр.
Я хотел бы рассказать, как правильно нужно использовать исключения в Java. Частично этот материал рассматривается на просторах интернета, а также рассматривается немного в книге J.Bloch Effective Java. Речь пойдет о использовании проверенных и непроверенных (checked/unchecked) исключениях. Статья будет полезна новичкам, т.к. вначале не всегда ясно, как правильно нужно пользоваться исключениями.
Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Registered
Activity