Когда пользуешься сложными алгоритмами для решения задач компьютерного зрения — нужно знать основы. Незнание основ приводит к глупейшим ошибкам, к тому, что система выдаёт неверифицируемый результат. Используешь OpenCV, а потом гадаешь: «может, если сделать всё специально под мою задачу ручками было бы сильно лучше?». Зачастую заказчик ставит условие «сторонних библиотек использовать нельзя», или, когда работа идёт для какого-нибудь микроконтроллера, — всё нужно прогать с нуля. Вот тут и приходит облом: в обозримые сроки реально что-то сделать, только зная как работают основы. При этом чтения статей зачастую не хватает. Прочитать статью про распознавание номеров и попробовать самому такое сделать — огромная пропасть. Поэтому лично я стараюсь периодически писать какие-нибудь простенькие программки, включающие в себя максимум новых и неизвестных для меня алгоритмов + тренирующих старые воспоминания. Рассказ — про один из таких примеров, который я написал за пару вечеров. Как мне показалось, вполне симпатичный набор алгоритмов и методов, позволяющий достичь простенького оценочного результата, которого я ни разу не видел.
Сидя вечером и страдая от того, что нужно сделать что-то полезное, но не хочется, я наткнулся на очередную статью по нейросетям и загорелся. Нужно сделать наконец-таки свою нейросеть. Идея банальная: все любят нейросети, примеров с открытым кодом масса. Мне иногда приходилось пользоваться и LeNet и сетями из OpenCV. Но меня всегда настораживало, что их характеристики и механику я знаю только по бумажкам. А между знанием «нейросети обучаются методом обратного распространения» и пониманием того, как это сделать пролегает огромная пропасть. И тогда я решился. Пришло время, чтобы 1-2 вечера посидеть и сделать всё своими руками, разобраться и понять.
Сидя вечером и страдая от того, что нужно сделать что-то полезное, но не хочется, я наткнулся на очередную статью по нейросетям и загорелся. Нужно сделать наконец-таки свою нейросеть. Идея банальная: все любят нейросети, примеров с открытым кодом масса. Мне иногда приходилось пользоваться и LeNet и сетями из OpenCV. Но меня всегда настораживало, что их характеристики и механику я знаю только по бумажкам. А между знанием «нейросети обучаются методом обратного распространения» и пониманием того, как это сделать пролегает огромная пропасть. И тогда я решился. Пришло время, чтобы 1-2 вечера посидеть и сделать всё своими руками, разобраться и понять.