Введение
fBM расшифровывается как Fractional Brownian Motion (дробное броуновское движение). Но прежде чем начать говорить о природе, фракталах и процедурных рельефах, давайте на минуту углубимся в теорию.
Броуновское движение (Brownian Motion, BM), просто, без «дробности» — это движение, при котором положение объекта с течением времени меняется со случайными инкрементами (представьте последовательность
position+=white_noise();
). С формальной точки зрения BM является интегралом белого шума. Эти движения задают пути, которые являются случайными, но (статистически) самоподобными, т.е. приближенное изображение пути напоминает весь путь. Fractional Brownian Motion — это схожий процесс, в котором инкременты не полностью независимы друг от друга, а в этом процессе существует некая память. Если память имеет положительную корреляцию, то изменения в заданном направлении будут иметь тенденцию к будущим изменениям в том же направлении, и путь при этом будет плавнее, чем при обычном BM. Если память имеет отрицательную корреляцию, то за изменением в положительную сторону с большой вероятностью последует изменение в отрицательную, и путь окажется гораздо более случайным. Параметр, управляющий поведением памяти или интегрированием, а значит и самоподобием, её размерностью фрактала и спектром мощности, называется показателем Хёрста и обычно сокращается до H. С математической точки зрения H позволяет нам интегрировать белый шум только частично (допустим, выполнить только 1/3 интегрирования, отсюда и «дробность» в названии) для создания fBM под любые нужные нам характеристики памяти и внешний вид. H принимает значения в интервале от 0 до 1, которые описывают, соответственно, грубое и плавное fBM, а обычное BM получается при H=1/2.
Здесь функция fBM() использована для генерации рельефа, облаков, распределения деревьев, вариаций их цветов и деталей крон. «Rainforest», 2016: https://www.shadertoy.com/view/4ttSWf