Pull to refresh
59
0
Руслан Еникеев @irriss

User

Send message

Что я хотел бы знать об акциях и долях, прежде чем стать частью стартапа-единорога

Reading time7 min
Views16K
Ограничение ответственности: настоящая статья написана анонимно. Упомянуто несколько конкретных компаний, но лишь в качестве общего примера.

Данный пост коротко рассказывает о том, что я хотел бы знать и продумать до поступления на работу в какую-либо закрытую акционерную (частную) компанию (она же стартап, она же «единорог» в некоторых случаях — при оценке стоимости выше $1 млрд).

Я не пытаюсь показать, что не следует присоединяться к такой компании, но неравенство сил (возможностей) учредителя и наёмного работника в ней является экстремальным, а потенциальным кандидатам не мешало бы рассмотреть альтернативы.

Представленная здесь информация не является новой или оригинальной, но целью данной статьи является представить все основные положения в одном месте.
Читать дальше →

Bitcoin in a nutshell — Transaction

Reading time9 min
Views79K

Если говорить об уже существующей банковской системе, то транзакция внутри какого-нибудь Альфа-банка — это просто редактирование таблицы балансов, где уменьшается число напротив одного имени и увеличивается напротив другого. В случае с межбанковскими переводами подключаются некоторые сторонние организации, например SWIFT, но, по сути, все работает примерно так же.


Когда мы имеем дело с финансовой системой на основе блокчейна, то процесс денежного перевода выглядит совершенно иначе. В Bitcoin не существует никакой общей таблицы вида <адрес, баланс>, ровно как и не существует регулятора, который бы эту таблицу редактировал. В этой статье я покажу, что из себя представляет транзакция в Bitcoin, как она строится, и объясню, зачем же внутри Bitcoin добавлен свой язык программирования, про который все слышали, но никто не видел.


meme

Читать дальше →

Рекурентная нейронная сеть в 10 строчек кода оценила отзывы зрителей нового эпизода “Звездных войн”

Reading time11 min
Views160K
Hello, Habr! Недавно мы получили от “Известий” заказ на проведение исследования общественного мнения по поводу фильма «Звёздные войны: Пробуждение Силы», премьера которого состоялась 17 декабря. Для этого мы решили провести анализ тональности российского сегмента Twitter по нескольким релевантным хэштегам. Результата от нас ждали всего через 3 дня (и это в самом конце года!), поэтому нам нужен был очень быстрый способ. В интернете мы нашли несколько подобных онлайн-сервисов (среди которых sentiment140 и tweet_viz), но оказалось, что они не работают с русским языком и по каким-то причинам анализируют только маленький процент твитов. Нам помог бы сервис AlchemyAPI, но ограничение в 1000 запросов в сутки нас также не устраивало. Тогда мы решили сделать свой анализатор тональности с блэк-джеком и всем остальным, создав простенькую рекурентную нейронную сеть с памятью. Результаты нашего исследования были использованы в статье “Известий”, опубликованной 3 января.



В этой статье я немного расскажу о такого рода сетях и познакомлю с парой классных инструментов для домашних экспериментов, которые позволят строить нейронные сети любой сложности в несколько строк кода даже школьникам. Добро пожаловать под кат.
Читать дальше →

Бесконечная история: гены, которые работают после смерти

Reading time6 min
Views22K
Накануне светлого праздника, свободного от идеологии, религии и культа личностей, принято вспоминать о чудесах и рассказывать невероятные истории. Новогодние истории — не обязательно про торжество справедливости, не про битву добра и зла. Они очень светлые и рассказывают о чудесах, которые случаются в повседневной жизни с самыми обычными существами. Вот и мы для вас подготовили новогоднюю сказку о… генах. Самые обычные существа в лаборатории — мыши и рыбки данио-рерио. Первым даже был поставлен памятник за их честную службу людям, а вторые, хоть и без памятника, безмолвно жертвуют своих крупных прозрачных эмбрионов ученым, чтобы те могли исследовать общие законы развития позвоночных. Ученые из Европы и Соединенных Штатов Америки попытались выяснить, что происходит с мышками и рыбками после смерти. Как-то раз в лаборатории калибровали метод измерения активности генов в трупиках животных, и вот что из этого получилось.

image

Читать дальше →

Расширенная регуляризация нейронных сетей в интернет-магазинах — с помощью… напалма

Reading time9 min
Views10K
Подмигнув дедушке Энштейну, поправив ранец с напалмом и пригладив стильную черную маечку с изображением формулы закона нормального распределения, ведущий аналитик распахнул двери PR-отдела, блистательно улыбнулся и спросил: «Ребят, продолжаете собирать e-mail клиентов в эксельках и креативите методом блуждания левой руки с закрытыми глазами?». Получив радостное «ага :-)», боец мысленно поблагодарил Джона Непера за проделанную работу на благо просвещения человечества и сокращение рутинного труда и… бодро нажал на гашетку.

Альберт Энштейн всегда вдохновлял аналитиков на внедрение передовых алгоритмов

Спустя 5 минут топливо в ранце уже закончилось, было довольно тепло, если не сказать — жарко, но коллеги (?) ничего не замечали и продолжали считать лайки под своими постами в соцсетях.
Читать дальше →

Как проверить причинную связь без эксперимента?

Reading time9 min
Views16K


Сегодня поговорим об установлении причинных связей между явлениями, когда невозможно провести эксперимент и А/В-тесты. Это довольно простая статья, которая будет полезна начинающим в статистике и машинном обучении или тем, кто раньше над такими вопросами не задумывался.

Действительно ли пациентам, тестирующим новое лекарство, становится лучше из-за лекарства, или они все все равно бы выздоровели? Ваши продавцы действительно эффективны или же они говорят с теми клиентами, которые и так готовы совершить покупку? Действительно ли Сойлент (или рекламная кампания, которая обойдётся фирме в миллион долларов) стоит вашего времени?
Читать дальше →

Особенности Jupyter Notebook, о которых вы (может быть) не слышали

Reading time10 min
Views372K
Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:



Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
Читать дальше →

Погружение в технологию блокчейн: Инфраструктура публичных ключей всемирного масштаба

Reading time9 min
Views10K
Продолжаем цикл статей про технологию Emer. Данная статья расскажет об инфраструктуре для управления терминальным доступом к узлам сети по протоколу ssh, emcSSH.


Читать дальше →

VaR как способ оценки риска. Исторический метод

Reading time7 min
Views43K


В этой статье я хочу познакомить вас с популярным инструментом для оценки финансового риска VaR (ValueAtRisk). При этом я постараюсь использовать минимум экономических, математических и статистических терминов.

Главные идеи VaR были разработаны и применены в банке JP Morgan в 80-х. Широкое применение VaR получил в 1993 когда был одобрен Группой тридцати(G-30) как часть “лучших практик” для работы с деривативами(производными финансовыми инструментами). А позже стала одним из показателей риска банка по системе Базель II (набор международных рекомендации по банковскому регулированию). Идею используемую в VaR можно отследить до ранних работ лауреата нобелевской премии по экономике Гарии Марковица в 1952.
Читать дальше →

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 1

Reading time10 min
Views97K


Это первая часть, вот вторая.
За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.
Читать дальше →

Парадокс Симпсона и немного Pandas

Reading time4 min
Views42K

О чем статья?


В этой статье я хочу рассмотреть один из наиболее известных примеров парадокса Симпсона, попутно немного рассказав о MultiIndex в Pandas.
Обо всем по порядку.

Парадокс Симпсона — контринтуитивное явление в Статистике, когда мы видим в каждой из групп данных определенную зависимость, но при объеденении этих групп зависимость исчезает или становится противоположной. Например, если смотреть изменение среднего заработка женщин 25 лет и старше, работающих полный день, между 2000 и 2012 годами с различным уровнем образования, то мы получим следующие цифры (все расчеты проводились с поправкой на инфляцию):

  • Less than 9th grade -3.7%
  • 9th-12th but didn’t finish -6.7%
  • High school graduate -3.3%
  • Some college but no degree -3.7%
  • Associate’s degree -10.0%
  • Bachelor’s degree or more -2.7%

По этим цифрам можно сделать вывод, что заработок женщин за 12 лет снизился. Однако, на самом деле, средний заработок женщин с полной занятостью вырос на 2.8% (подробнее про этот пример можно почитать тут).

Одним из наиболее известных примеров парадокса Симпсона является случай половой дискриминации при поступлении в Калифорнийский унивеситет Berkeley. Его и будем рассматривать далее.
Читать дальше →

Зачем нужен алгоритм Хо-Кашьяпа?

Reading time4 min
Views19K
Недавно на Хабре появилась публикация про алгоритм Хо-Кашьяпа (Ho-Kashyap procedure, он же — алгоритм НСКО, наименьшей среднеквадратичной ошибки). Мне она показалась не очень понятной и я решил разобраться в теме сам. Выяснилось, что в русскоязычном интернете тема не очень хорошо разобрана, поэтому я решил оформить статью по итогам поисков.

Несмотря на бум нейросетей в машинном обучении, алгоритмы линейной классификации остаются гораздо более простыми в использовании и интерпретации. Но при этом иногда вовсе не хочется пользоваться сколько-нибудь продвинутыми методами, вроде метода опорных векторов или логистической регрессии и возникает искушение загнать все данные в одну большую линейную МНК-регрессию, тем более её прекрасно умеет строить даже MS Excel.

Проблема такого подхода в том, что даже если входные данные линейно разделимы, то получившийся классификатор может их не разделять. Например, для набора точек X = [(6, 9), (5, 7), (5, 9), (10, 1)], y = [1, 1, -1, -1] получим разделяющую прямую (0.15x_1 - 0.43x_2 + 3.21) = 0 (пример позаимствован из (1)):

Latex


Встаёт вопрос — можно ли как-то избавиться от этой особенности поведения?
Под катом немного теории и код на python

Как программист машину покупал. Часть II

Reading time11 min
Views40K
В предыдущей статье на примере покупки Mercedes-Benz E-klasse не старше 2010 года выпуска стоимостью до 1.5 млн рублей в Москве была рассмотрена задача поиска выгодных автомобилей. Под выгодными следует понимать предложения, цена которых ниже рыночной в текущий момент среди объявлений, собранных со всех наиболее авторитетных сайтов по продаже б/у автомобилей в РФ.

На первом этапе в качестве метода машинного обучения была выбрана множественная линейная регрессия, были рассмотрены правомерность ее использования, а также плюсы и минусы. Простая линейная регрессия была выбрана в качестве ознакомительного алгоритма. Очевидно, что существует еще много методов машинного обучения для решения поставленной задачи регрессии. В этой статье я хотел бы рассказать вам, как именно я выбирал наиболее оптимальный алгоритм машинного обучения для исследуемой модели, который в настоящее время используется в реализованном мною сервисе — robasta.ru.


Читать дальше →

Обзор топологий глубоких сверточных нейронных сетей

Reading time18 min
Views110K
Это будет длиннопост. Я давно хотел написать этот обзор, но sim0nsays меня опередил, и я решил выждать момент, например как появятся результаты ImageNet’а. Вот момент настал, но имаджнет не преподнес никаких сюрпризов, кроме того, что на первом месте по классификации находятся китайские эфэсбэшники. Их модель в лучших традициях кэгла является ансамблем нескольких моделей (Inception, ResNet, Inception ResNet) и обгоняет победителей прошлого всего на полпроцента (кстати, публикации еще нет, и есть мизерный шанс, что там реально что-то новое). Кстати, как видите из результатов имаджнета, что-то пошло не так с добавлением слоев, о чем свидетельствует рост в ширину архитектуры итоговой модели. Может, из нейросетей уже выжали все что можно? Или NVidia слишком задрала цены на GPU и тем самым тормозит развитие ИИ? Зима близко? В общем, на эти вопросы я тут не отвечу. Зато под катом вас ждет много картинок, слоев и танцев с бубном. Подразумевается, что вы уже знакомы с алгоритмом обратного распространения ошибки и понимаете, как работают основные строительные блоки сверточных нейронных сетей: свертки и пулинг.

Читать дальше →

Python для математических вычислений. Опыт Марка Андреева

Level of difficultyEasy
Reading time4 min
Views90K

image Экосистема языка python стремительно развивается. Это уже не просто язык общего назначения. С его помощью можно успешно разрабатывать веб-приложения, системные утилиты и много другое. В этой заметке мы сконцентрируемся все же на другом приложении, а именно на научных вычислениях. Я хотел бы поделиться своим опытом в данной теме.


Мы попытаемся найти в языке функции, которые обычно требуем от математических пакетов. Рассмотрим сильные и слабые стороны идеи использования python вместо MATLAB, Maple, Mathcad, Mathematica.

Читать дальше →

Обзор курсов по Deep Learning

Reading time11 min
Views71K
Привет, Хабр! Последнее время все больше и больше достижений в области искусственного интеллекта связано с инструментами глубокого обучения или deep learning. Мы решили разобраться, где же можно научиться необходимым навыкам, чтобы стать специалистом в этой области.

image
Читать дальше →

О степенях свободы в статистике

Reading time8 min
Views240K
В одном из предыдущих постов мы обсудили, пожалуй, центральное понятие в анализе данных и проверке гипотез — p-уровень значимости. Если мы не применяем байесовский подход, то именно значение p-value мы используем для принятия решения о том, достаточно ли у нас оснований отклонить нулевую гипотезу нашего исследования, т.е. гордо заявить миру, что у нас были получены статистически значимые различия.

Однако в большинстве статистических тестов, используемых для проверки гипотез, (например, t-тест, регрессионный анализ, дисперсионный анализ) рядом с p-value всегда соседствует такой показатель как число степеней свободы, он же degrees of freedom или просто сокращенно df, о нем мы сегодня и поговорим.


Читать дальше →

Что такое свёрточная нейронная сеть

Reading time13 min
Views272K


Введение


Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря им выиграл конкурс ImageNet (грубо говоря, это ежегодная олимпиада по машинному зрению), снизив рекорд ошибок классификации с 26% до 15%, что тогда стало прорывом. Сегодня глубинное обучения лежит в основе услуг многих компаний: Facebook использует нейронные сети для алгоритмов автоматического проставления тегов, Google — для поиска среди фотографий пользователя, Amazon — для генерации рекомендаций товаров, Pinterest — для персонализации домашней страницы пользователя, а Instagram — для поисковой инфраструктуры.


Но классический, и, возможно, самый популярный вариант использования сетей это обработка изображений. Давайте посмотрим, как СНС используются для классификации изображений.


Задача


Задача классификации изображений — это приём начального изображения и вывод его класса (кошка, собака и т.д.) или группы вероятных классов, которая лучше всего характеризует изображение. Для людей это один из первых навыков, который они начинают осваивать с рождения.


Читать дальше →

Рекомендательные системы в онлайн-образовании. Продолжение

Reading time10 min
Views11K

Мы продолжаем рассказывать о системе адаптивного обучения на Stepic.org. Первую вводную часть этой серии можно почитать здесь.


В данной статье мы расскажем о построении рекомендательной системы (которая и лежит в основе адаптивности). Расскажем о сборе и обработке пользовательских данных, о графах переходов, хендлерах, оценке реакции пользователя, формировании выдачи.


Вспомним про линейную регрессию, регуляризацию и даже поймём, почему в нашем случае лучше использовать гребневую регрессию, а не какую-нибудь там ещё.



Ну, поехали

Искусство прогнозирования в системе SAP F&R для управления запасами

Reading time3 min
Views9.5K
SAP F&R (Forecasting & Replenishment) – это система планирования заказов и прогнозирования спроса для формирования проектов заказа на уровне магазин-поставщик. Система входит в состав решения SAP SCM (Управление цепочками поставок) и внедряется в двух вариациях:

  • SAP F&R SCM – внедрение с бесшовной интеграцией с SAP-системами;
  • SAP F&R OI – система для интеграции с неSAP-системами.

В данном посте рассмотрены возможности расчета среднего прогноза в системе SAP F&R.
Читать дальше →

Information

Rating
9,976-th
Location
Сингапур
Registered
Activity