Search
Write a publication
Pull to refresh
53
0
Борис Орехов @nevmenandr

Компьютерный лингвист

Send message

Самые полезные приёмы работы в командной строке Linux

Reading time5 min
Views158K
Каждый, кто пользуется командной строкой Linux, встречался со списками полезных советов. Каждый знает, что повседневные дела вполне можно выполнять эффективнее, да только вот одно лишь это знание, не подкреплённое практикой, никому не приносит пользы.

Как выглядят типичные трудовые будни системного администратора, который сидит на Linux? Если абстрагироваться от всего, кроме набираемых на клавиатуре команд, то окажется, что команды эти постоянно повторяются. Всё выходит на уровень автоматизма. И, если даже в работе есть что улучшать, привычка противится новому. Как результат, немало времени уходит на то, чтобы делать так, как привычнее, а не так, как быстрее, и, после небольшого периода привыкания – удобнее. Помнить об этом, сознательно вводить в собственную практику новые полезные мелочи – значит профессионально расти и развиваться, значит – экономить время, которое можно много на что потратить.

image

Перед вами – небольшой список полезных приёмов работы с командной строкой Linux. С некоторыми из них вы, возможно, уже знакомы, но успели их позабыть. А кое-что вполне может оказаться приятной находкой даже для знатоков. Хочется надеяться, что некоторые из них будут вам полезны и превратятся из «списка» в живые команды, которыми вы будете пользоваться каждый день.
Читать дальше →

Telegram-бот, webhook и 50 строк кода

Reading time5 min
Views176K
Как, опять? Ещё один туториал, пережёвывающий официальную документацию от Telegram, подумали вы? Да, но нет! Это скорее рассуждения на тему того, как построить функциональный бот-сервис используя Python3.5+, asyncio и aiohttp. Тем интереснее, что заголовок на самом деле лукавит…
Читать дальше →

Как я покупал квартиру

Reading time11 min
Views62K
Я хотел написать статью про линейную регрессию, но потом подумал, да ну её, лучше куплю квартиру. И пошёл искать, что предлагают. А предлагают, как оказалось, много чего. В подходящий мне ценовой диапозон попало больше 500 квартир. И что, мне теперь все это просматривать? Ну нееет, программист я в конце концов или не программист. Надо это дело как-то автоматизировать.
Читать дальше →

Тренируем нейронную сеть написанную на TensorFlow в облаке, с помощью Google Cloud ML и Cloud Shell

Reading time14 min
Views25K
В предыдущей статье мы обсудили как натренировать чат-бот на базе рекуррентной нейронной сети на AWS GPU инстансе. Сегодня мы увидим, как легко можно обучить такую же сеть с помощью Google Cloud ML и Google Cloud Shell. Благодаря Google Cloud Shell не нужно будет делать практически ничего на локальном компьютере! Кстати, сеть из прошлой статьи мы взяли лишь для примера, можно спокойно брать любую другую сеть, которая использует TensorFlow.

image
Читать дальше →

Chatbot на базе рекуррентной нейронной сети своими руками за 1 вечер/6$ и ~ 100 строчек кода

Reading time10 min
Views114K
В данной статье я хочу показать насколько просто сегодня использовать нейронные сети. Вокруг меня довольно много людей одержимы идеей того, что нейронки может использовать только исследователь. И что бы получить хоть какой то выхлоп, нужно иметь как минимуму кандидатскую степень. А давайте на реальном примере посмотрим как оно на самом деле, взять и с нуля за один вечер обучить chatbot. Да еще не просто абы чем а самым что нинаесть ламповым TensorFlow. При этом я постарался описать все настолько просто, что-бы он был понятен даже начинающему программисту! В путь!

image
Читать дальше →

Нейросеть Google Translate составила единую базу смыслов человеческих слов

Reading time4 min
Views97K

«Универсальный язык» нейронной сети Google Neural Machine Translation (GNMT). На левой иллюстрации разными цветами показаны кластеры значений каждого слова, справа внизу — смыслы слова, полученные для него из разных человеческих языков: английского, корейского и японского

За последние десять лет система автоматического перевода текстов Google Translate выросла с нескольких языков до 103, а сейчас она переводит 140 млрд слов ежедневно. В сентябре сообщалось, что разработчики приняли решение полностью перевести сервис Google Translate на глубинное обучение. У этого подхода есть много преимуществ. Перевод становится гораздо лучше. Более того, система может переводить тексты на языки, для которых никогда не видела переводов, то есть не обучалась специально для этой языковой пары.
Читать дальше →

Что такое свёрточная нейронная сеть

Reading time13 min
Views272K


Введение


Свёрточные нейронные сети (СНС). Звучит как странное сочетание биологии и математики с примесью информатики, но как бы оно не звучало, эти сети — одни из самых влиятельных инноваций в области компьютерного зрения. Впервые нейронные сети привлекли всеобщее внимание в 2012 году, когда Алекс Крижевски благодаря им выиграл конкурс ImageNet (грубо говоря, это ежегодная олимпиада по машинному зрению), снизив рекорд ошибок классификации с 26% до 15%, что тогда стало прорывом. Сегодня глубинное обучения лежит в основе услуг многих компаний: Facebook использует нейронные сети для алгоритмов автоматического проставления тегов, Google — для поиска среди фотографий пользователя, Amazon — для генерации рекомендаций товаров, Pinterest — для персонализации домашней страницы пользователя, а Instagram — для поисковой инфраструктуры.


Но классический, и, возможно, самый популярный вариант использования сетей это обработка изображений. Давайте посмотрим, как СНС используются для классификации изображений.


Задача


Задача классификации изображений — это приём начального изображения и вывод его класса (кошка, собака и т.д.) или группы вероятных классов, которая лучше всего характеризует изображение. Для людей это один из первых навыков, который они начинают осваивать с рождения.


Читать дальше →

Небольшое введение в параллельное программирование на R

Reading time8 min
Views6.8K
Давайте поговорим об использовании и преимуществах параллельных вычислений в R.

Причина, по которой стоит об этом задуматься: заставляя компьютер больше работать (выполнять много расчетов одновременно), мы меньше времени ждем результатов наших экспериментов и можем выполнить еще. Это особенно важно для анализа данных (R как платформа обычно используется именно для этой цели), поскольку часто требуется повторить вариации одного и того же подхода, чтобы что-то узнать, вывести значения параметров, оценить стабильность модели.

Обычно, для того, чтобы заставить компьютер больше работать, сначала нужно потрудиться самому аналитику, программисту или создателю библиотеки, чтобы организовать вычисления в виде, удобном для параллелизации. В лучшем случае кто-то уже сделал это за вас:
  • Хорошие параллельные библиотеки, например, многопоточные BLAS/LAPACK, включены в Revolution R Open (RRO, сейчас Microsoft R Open) (смотреть здесь).
  • Специализированные параллельные расширения, предоставляющие свои собственные высокопроизводительные реализации важных процедур, например, методы rx от RevoScaleR или методы h2o от h2o.ai.
  • Фреймворки абстрактной параллелизации, например, Thrust/Rth.
  • Использование прикладных библиотек R, связанных с параллелизацией (в частности, gbm, boot и vtreat). (Некоторые из этих библиотек не используют параллельные операции, пока не задано окружение для параллельного выполнения.)
Читать дальше →

Проект Wikiverse: визуализация информационной вселенной Википедии

Reading time2 min
Views10K


Википедия — огромный информационный ресурс, где есть ответы на очень многие вопросы. Здесь можно начать с поиска ответа на вопрос о способах колонизации Марса и закончить изучением статьи о головоногих моллюсках Мексиканского залива. Статьи связаны друг с другом, определение того либо иного незнакомого термина, встретившегося в статье, можно найти, просто кликнув по самому термину. В большинстве случаев имена собственные, термины, названия видов животных и растений залинкованы со статьями, где рассказывается, что это такое.

Авторы проекта Wikiverse решили наглядно показать связи между разделами, подразделами и отдельными статьями Википедии. Для этого была создана визуальная модель информационной вселенной Википедии. Вся онлайн-энциклопедия (англоязычная версия) представлена в виде шара, внутри которого размещаются созвездия и кластеры созвездий — статьи схожей тематики. Это могут быть материалы об определенном времени истории человечества, изобразительном искусстве, сфере технологий или любых других темах.
Читать дальше →

Стилизация изображений с помощью нейронных сетей: никакой мистики, просто матан

Reading time14 min
Views92K

Приветствую тебя, Хабр! Наверняка вы заметили, что тема стилизации фотографий под различные художественные стили активно обсуждается в этих ваших интернетах. Читая все эти популярные статьи, вы можете подумать, что под капотом этих приложений творится магия, и нейронная сеть действительно фантазирует и перерисовывает изображение с нуля. Так уж получилось, что наша команда столкнулась с подобной задачей: в рамках внутрикорпоративного хакатона мы сделали стилизацию видео, т.к. приложение для фоточек уже было. В этом посте мы с вами разберемся, как это сеть "перерисовывает" изображения, и разберем статьи, благодаря которым это стало возможно. Рекомендую ознакомиться с прошлым постом перед прочтением этого материала и вообще с основами сверточных нейронных сетей. Вас ждет немного формул, немного кода (примеры я буду приводить на Theano и Lasagne), а также много картинок. Этот пост построен в хронологическом порядке появления статей и, соответственно, самих идей. Иногда я буду его разбавлять нашим недавним опытом. Вот вам мальчик из ада для привлечения внимания.


Читать дальше →

Самое главное о нейронных сетях. Лекция в Яндексе

Reading time30 min
Views190K
Кажется, не проходит и дня, чтобы на Хабре не появлялись посты о нейронных сетях. Они сделали машинное обучение доступным не только большим компаниям, но и любому человеку, который умеет программировать. Несмотря на то, что всем кажется, будто о нейросетях уже всем все известно, мы решили поделиться обзорной лекцией, прочитанной в рамках Малого ШАДа, рассчитанного на старшеклассников с сильной математической подготовкой.

Материал, рассказанный нашим коллегой Константином Лахманом, обобщает историю развития нейросетей, их основные особенности и принципиальные отличия от других моделей, применяемых в машинном обучении. Также речь пойдёт о конкретных примерах применения нейросетевых технологий и их ближайших перспективах. Лекция будет полезна тем, кому хочется систематизировать у себя в голове все самые важные современные знания о нейронных сетях.



Константин klakhman Лахман закончил МИФИ, работал исследователем в отделе нейронаук НИЦ «Курчатовский институт». В Яндексе занимается нейросетевыми технологиями, используемыми в компьютерном зрении.

Под катом — подробная расшифровка со слайдами.
Читать дальше →

Hello, TensorFlow. Библиотека машинного обучения от Google

Reading time11 min
Views229K

tensorflow


Проект TensorFlow масштабнее, чем вам может показаться. Тот факт, что это библиотека для глубинного обучения, и его связь с Гуглом помогли проекту TensorFlow привлечь много внимания. Но если забыть про ажиотаж, некоторые его уникальные детали заслуживают более глубокого изучения:


  • Основная библиотека подходит для широкого семейства техник машинного обучения, а не только для глубинного обучения.
  • Линейная алгебра и другие внутренности хорошо видны снаружи.
  • В дополнение к основной функциональности машинного обучения, TensorFlow также включает собственную систему логирования, собственный интерактивный визуализатор логов и даже мощную архитектуру по доставке данных.
  • Модель исполнения TensorFlow отличается от scikit-learn языка Python и от большинства инструментов в R.

Все это круто, но TensorFlow может быть довольно сложным в понимании, особенно для того, кто только знакомится с машинным обучением.


Как работает TensorFlow? Давайте попробуем разобраться, посмотреть и понять, как работает каждая часть. Мы изучим граф движения данных, который определяет вычисления, через которые предстоит пройти вашим данным, поймем, как тренировать модели градиентным спуском с помощью TensorFlow, и как TensorBoard визуализирует работу с TensorFlow. Наши примеры не помогут решать настоящие проблемы машинного обучения промышленного уровня, но они помогут понять компоненты, которые лежат в основе всего, что создано на TensorFlow, в том числе того, что вы напишите в будущем!

Читать дальше →

Эффективное использование Github

Reading time13 min
Views127K

Github — важная часть жизни современного разработчика: он стал стандартом для размещения opensource-проектов. В «2ГИС» мы используем гитхаб для разработки проектов web-отдела и хостинга проектов с открытым кодом.

Хотя большинство из нас пользуются сервисом практически каждый день, не все знают, что у него есть много фишек, помогающих облегчить работу или рутинные операции. Например, получение публичного ключа из URL; отслеживание того, с каких сайтов пользователи приходят в репозиторий; правильный шаринг ссылок на файлы, которые живут в репозиториях гитхаба; горячие клавиши и тому подобное. Цель этой статьи — рассказать о неочевидных вещах и вообще о том, что сделает вашу работу с гитхабом продуктивнее и веселее (я не буду рассматривать здесь работу с API гитхаба, так как эта тема заслуживает отдельной статьи).


Содержание



Читать дальше →

Как обучается ИИ

Reading time27 min
Views74K

Источник изображения.

Есть ли связь между трехглазой жабой и нейронными сетями? Что общего у программы, выигрывающей в го, и приложением Prisma, перерисовывающим фотографии под стили картин известных художников? Как компьютеры одолели нарды, а затем покусились на святое — и выиграли у человека в “Космических захватчиков”?
Дадим ответы на все эти вопросы, а еще поговорим о революции, связанной с глубоким обучением, благодаря которому удалось добиться прорыва во многих областях.
Читать дальше →

Очередная блокировка части IP-адресов GitHub

Reading time2 min
Views30K
Вчера и сегодня часть IT-населения нашей страны (России) столкнулась с неожиданной проблемой, при попытке зайти н GitHub, чтобы, например, почитать pull-request или документацию к какой-нибудь библиотеке. Сайт долго тупил, после чего загружался без стилей, картинок и скриптов.


Читать дальше →

Нейронные сети на Javascript

Reading time7 min
Views169K
image
Идея для написания этой статьи возникла прошлым летом, когда я слушал доклад на конференции BigData по нейронным сетям. Лектор «посыпал» слушателей непривычными словечками «нейрон», «обучающая выборка», «тренировать модель»… «Ничего не понял — пора в менеджеры», — подумал я. Но недавно тема нейронных сетей все же коснулась моей работы и я решил на простом примере показать, как использовать этот инструмент на языке JavaScript.

Мы создадим нейронную сеть, с помощью которой будем распознавать ручное написание цифры от 0 до 9. Рабочий пример займет несколько строк. Код будет понятен даже тем программистам, которые не имели дело с нейронными сетями ранее. Как это все работает, можно будет посмотреть прямо в браузере.
Читать дальше →

Пропорции в искусстве. Есть ли что-то лучше золотого сечения? Исследование более 1 000 000 старых и современных картин

Reading time39 min
Views72K


Перевод поста Майкла Тротта (Michael Trott) "Aspect Ratios in Art: What Is Better Than Being Golden? Being Plastic, Rooted, or Just Rational? Investigating Aspect Ratios of Old vs. Modern Paintings".
Код, приведенный в статье, можно скачать здесь.
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации

Содержание


Предисловие: золотое сечение — красивая математическая концепция
Работа Фехнера 1876 года об эстетичности прямоугольников и соотношениях сторон в картинах
Легкий старт: анализ «Artwork» — области базы знаний Wolfram Knowledgebase
Первая часть: особенности вероятностного распределения соотношений сторон
Соотношения сторон для разных веков, жанров и художников
Анализируя пять старых немецких музейных каталогов
Коллекция Кресса: четыре больших PDF файла
У нас представлены коллекции следующих галерей: Метрополитен (Metropolitan), институт искусств Чикаго, Эрмитаж, Национальная Галерея (National Gallery), Рейксмюзеум (Rijks) и Тейт Британия
Исключение в соотношениях сторон: Национальная портретная галерея
Веб-галерея изящных искусств: удобная база данных, готовая к использованию
Примечание II: важность точности в измерениях
WikiArt: еще один крупный веб-ресурс
Коллекция Французского государственного музея
Картины в итальянских церквях: высота есть всё
Смитсоновская коллекция
Большая коллекция картин в Великобритании
Нынешний рынок изящных искусств: рациональней чем когда-либо
Проданные картины: большинство написаны недавно, а у распределения длинный хвост
Восток: все показатели отличаются
Пропорции пакетов, автомобилей, этикеток, логотипов, эмблем, бумаги, банкнот, почтовых марок и фильмов
Продукты из супермаркета
Винные этикетки
Этикетки немецких сортов пива
Логотипы продуктов питания
Банкноты
Размеры автомобилей
Бумажные листы
Марки
Эмблемы команд NCAA (Национальной ассоциации студенческого спорта)
Эмблемы немецких футбольных клубов
Форматы фильмов
Заключение: так какое соотношение самое «лучшее»?
Картины великих мастеров — едва ли не самое прекрасное из человеческого наследия. Ими дорожили и восхищались, бережно хранили и продавали за сотни миллионов долларов, и, возможно, не по случайности они являются главной целью похитителей предметов искусства. Их композиции, цвета, детали, темы могут держать нас в восхищении и внимании часами. Но что можно сказать об отношении их внешних размеров — высоты к ширине?

В 1876 году немецкий ученый Густав Теодор Фехнер изучал человеческое восприятие прямоугольных форм, а после заключил, что прямоугольники с золотой пропорцией (то же, что и золотое сечение) наиболее приятны для человеческого глаза. Чтобы проверить свои экспериментальные наблюдения, Фехнер также проанализировал соотношения более десяти тысяч картин.
Читать дальше...

Визуализация с Google Chart Tools API

Reading time4 min
Views54K
Google Chart Tools API – это многофункциональный набор инструментов для визуализации данных. С помощью него можно относительно легко строить графики и диаграммы на сайте.

Функционал Google Chart Tools API включает в себя:

  • Динамические пиктограммы;
  • Карты;
  • Циферблаты и дисплеи;
  • Формулы;
  • QR-коды;
  • Возможность создавать свои инструменты визуализации и использовать сторонние.

Карта


image
Сделаем визуализацию данных с помощью карты, раскрашенной в соответствии с внесенными данными. Для начала подключаем файлы, loader.js обязателен.
Читать дальше →

Игра Престолов в числах

Reading time3 min
Views37K


Привет, Geektimes.

Наверняка я не единственный, кто ждет не только следующей серии сериала, но и следующей книги фентези-романа "Песнь льда и пламени" («A Song of Ice and Fire»). В статье я не буду затрагивать экранизацию истории, т.к. её анализ сложен и в книге информации больше. Я постараюсь привести наиболее интересную статистику, что мне удалось найти. Пусть заголовок вас не смущает, далее речь пойдет о всей серии книг автора, а точнее первых 5ти, которые опубликованы на момент написания статьи.
Всем кому интересно, добро пожаловать под кат.
Читать дальше →

R: геопространственные библиотеки

Reading time4 min
Views5.2K
Ввод/вывод, изменение и визуализация геопространственных данных — задачи, общие для многих дисциплин. Поэтому многие заинтересованы в создании хороших инструментов для их решения. Набор инструментов для работы с пространственными данными постоянно растет. Мы поверхностно рассмотрим каждый из них. Подробности можно получить по ссылкам на cran или github.

Мы не пытаемся заменить уже существующие в R геопространственные библиотеки — скорее, дополнить и создать небольшие инструменты, позволяющие легко воспользоваться только необходимыми вам функциями.
Читать дальше →

Information

Rating
Does not participate
Location
Москва, Москва и Московская обл., Россия
Date of birth
Registered
Activity