LightGBM расширяет алгоритм градиентного бустинга, добавляя тип автоматического выбора объектов, а также фокусируясь на примерах бустинга с большими градиентами. Это может привести к резкому ускорению обучения и улучшению прогнозных показателей. Таким образом, LightGBM стала де-факто алгоритмом для соревнований по машинному обучению при работе с табличными данными для задач регрессионного и классификационного прогностического моделирования. В этом туториале вы узнаете, как разрабатывать ансамбли машин Light Gradient Boosted для классификации и регрессии. После завершения этого урока вы будете знать:
- Light Gradient Boosted Machine (LightGBM) — эффективную реализацию ансамбля стохастического градиентного бустинга с открытым исходным кодом.
- Как разрабатывать ансамбли LightGBM для классификации и регрессии с помощью API scikit-learn.
- Как исследовать влияние гиперпараметров модели LightGBM на её производительность.
