Комментарии 12
От себя: удваиваю рекомендованный автором www.edx.org/course/probability-the-science-of-uncertainty-and-data — очень крутой курс с понятными объяснениями (сигма-алгебр там нет), при этом довольно сложный, настолько что во время его прохождения ни на какую другую учебу сил уже не было. В мае в очередной раз запускается его продолжение (точнее оба курса объединены в одной магистерской программе) — курс по матстату www.edx.org/course/fundamentals-of-statistics, думаю его тоже пройти. Кто-нибудь проходил уже кстати?
В целом, с курсами по мат. статистике следующая беда: без теории они превращаются в набор несвязных рецептов (и таких курсов много, например на моем любимом степике курсы от института Биоинформатики больше тяготеют именно к рецептурному знанию).
С теорией они становятся жутко сложными, потому что условное мат. ожидание, потому что сигма-алгебры, потому что непонятна связь с практикой. В этом направлении также много курсов и книг — практически любую российскую книгу по статистике открыть можно (Боровков, Ивченко/Медведев, ...).
В итоге «середнячка» очень мало, и поэтому мне упомянутый курс очень «зашёл»: он не перегружен доказательствами теорем, при этом после него остается какое-то цельное ощущение.
Вопросы конечно лучше задавать не после, а во время чтения книг ) я обычно сначала пытаюсь ответить сам, потом какое-то время ищу ответы в интернете, на stackexchange есть особый подраздел как по математике, так и по всякому анализу данных, статистике и тд. Если там ничего не находится, я пытаюсь самостоятельно свой вопрос сформулировать и запостить, чаще всего в течение дня можно получить первые ответы.
Так что из англоязычных это quora, stackexchange.
Из русских это однозначно форум dxdy, раздел "помогите решить/разобраться", но во-первых там довольно строгие правила оформления вопроса, во-вторых, просят сначала предъявить свои попытки решения и что не получилось, в-третьих, часто там дают не ответ, а подсказку, чтобы сами дальше думали :)
Ну и тематические чаты в telegram, например есть хороший чат по языку R rlang_ru, где отвечают не только про R, но и про статистику в общем.
Не могу не отметить плюс онлайн курсов — обычно там к каждому уроку есть тематический раздел форума, где можно спросить что то именно по этому уроку/степу. Если курс с датами, то ответят быстро; если со свободным стартом, то придется подождать.
Иногда люди объединяются и читают какую-нибудь книжку одновременно и вместе и собираются на тематические встречи. Так, к примеру, сейчас есть такой запуск по Стэнфордскому курсу по NLP на базе МФТИ; бывает, читают всякие байесовские штуки в антикафе Кочерга. Такая деятельность отнимает больше времени, но недооценивать эту совместную деятельность нельзя: она даёт более глубокое понимание.
Подскажите, в какую категорию вы отнесли бы курсы по матанализу (из двух частей) и линалу от CSC на степике. Стоит ли начинать с них по вашему мнению?
Курсы на stepik от Храброва номер 1, номер 2, номер 3 как раз ближе к Analysis, так что зависит от того, какие цели вы преследуете. Я их проходил, но я не думаю, что это те курсы, которые должен пройти каждый ) Т.е. если вы имеете непосредственное отношение к математике, то такой курс нормально будет пройти, они примерно соответствуют первым двум курсам по анализу от мехмата МГУ (может, чуть попроще, но несильно). Если вы хотите только освоить язык и некоторые приложения, то это явно избыточно, но никакое обучение «даром» не проходит в любом случае. Если только начинать знакомиться с анализом, то я бы не советовал — можно не потянуть и разочароваться в математике вообще.
Так что нужно искать что-то по запросам «calculus MOOC», таких курсов много, но я не могу сориентировать, какой из них лучше, поскольку мне на мехмате матана хватило с лихвой, и я после окончания больше в эту тему особо не залезал. Смотрел только немного вот этот, мне он показался более-менее приличным, но он уже после того, как основные понятия освоены.
Линейную алгебру можно изучать в двух «ипостасях», как это обычно делается в зарубежных вузах.
Первое знакомство — это обычно курс уровня Стрэнга, то есть матрицы, строки, векторы, пространства строк-столбцов, определители, некоторые матричные разложения, может быть немного собственные вектора.
Второе знакомство — это курс наподобие Axler, т.е. это абстрактные линейные пространства (с уже наработанными конкретными примерами из курса №1), линейные преобразования, жорданова форма, квадратичные формы, приведение к главным осям и т.д.
Есть большой спор, от чего нужно идти: от общего к частному (т.е. начиная с курса №2, а потом к курсу №1) или от частных примеров к обобщениям (от курса №1 к курсу №2). Всем «заходит» по-разному.
На Степике по линейной алгебре есть 2 курса, насколько я помню:
1. Linear algebra: problems and methods больше похож на курс Axler. Я его прошел, и он мне понравился :)
2. Линейная алгебра мне понравился меньше, если выбирать между курсами в духе Стрэнга, то тут конечно лучше слушать самого маэстро )
У меня возник следующий вопрос, быть может автор или кто-то из комьюнити знает: есть ли где-то агрегатор подобных «дорожных карт» для изучения иных областей?
В целом, концепт кажется просто отличным, ведь обладая подобного рода наглядными картами, человек сможет ориентироваться в том, что, как и для чего он изучает/хотел бы изучить.
Кроме того интересно узнать, существует ли практика применения «дорожных карт» в каких-либо российских вузах? Мне кажется, это как минимум полезная фича для улучшения образования.
Такую вещь я встречал вроде бы дважды или трижды:
1. На сайте OCW MIT, который я не перестаю хвалить, есть подобная карта по ВСЕМ курсам от MIT: карта.
2. На сайте Александа Дайняка упоминаются ассоциативные карты понятий, но насколько я понял, он их применяет в рамках одного курса, например по его курсу Дискретные структуры, но есть и другие.
3. В лекции Шкляева в помощь первокурснику мехмата МГУ есть карта взаимозависимости мехматских курсов друг от друга: в районе 1ой минуты
Дорожная карта математических дисциплин для машинного обучения, часть 2 (вероятности)