Как стать автором
Обновить
64.27
Сначала показывать

Обзор гибких методологий проектирования DWH

Время на прочтение15 мин
Количество просмотров70K
Разработка хранилища — дело долгое и серьезное.

Многое в жизни проекта зависит от того, насколько хорошо продумана объектная модель и структура базы на старте.

Общепринятым подходом были и остаются различные варианты сочетания схемы “звезда” с третьей нормальной формой. Как правило, по принципу: исходные данные — 3NF, витрины — звезда. Этот подход, проверенный временем и подкрепленный большим количеством исследований — первое (а иногда и единственное), что приходит в голову опытному DWH-шнику при мысли о том, как должно выглядеть аналитическое хранилище.

С другой стороны — бизнесу в целом и требованиям заказчика в частности свойственно быстро меняться, а данным — расти как “вглубь”, так и “вширь”. И вот тут проявляется основной недостаток звезды — ограниченная гибкость.

И если в вашей тихой и уютной жизни DWH-разработчика внезапно:

  • возникла задача “сделать быстро хоть что-то, а потом посмотрим”;
  • появился бурно развивающийся проект, с подключением новых источников и переделкой бизнес-модели минимум раз в неделю;
  • появился заказчик, который не представляет как система должна выглядеть и какие функции выполнять в конечном итоге, но готов к экспериментам и последовательному уточнению желаемого результата с последовательным же приближением к нему;
  • заглянул менеджер проектов с радостной вестью: “А теперь у нас аджайл!”.

Или если вам просто интересно узнать как еще можно строить хранилища — вэлкам под кат!


Читать дальше →
Всего голосов 17: ↑17 и ↓0+17
Комментарии14

Как Reinforcement Learning помогает ритейлерам

Время на прочтение14 мин
Количество просмотров6.3K

Введение


Привет! Наша команда Glowbyte Advanced Analytics разрабатывает ML-решения для прикладных индустрий (ритейл, банки, телеком и др). Многие задачи требуют нестандартных решений. Одно из них — оптимизация цепочек коммуникаций с клиентом с помощью Reinforcement Learning (RL), которому мы решили посвятить данную статью.

Мы разбили статью на три блока: введение в задачу оптимизации цепочек коммуникаций; введение в RL; а в третьем блоке мы объединяем 1 и 2 вместе.

image
Читать дальше →
Всего голосов 2: ↑2 и ↓0+2
Комментарии0

Понятная аналитика. Опыт внедрения сервисом Работа.ру решения Tableau

Время на прочтение4 мин
Количество просмотров3.6K
У каждого бизнеса возникает потребность в качественной аналитике данных и ее визуализации. Еще один важный фактор, который следует учитывать — это простота использования для бизнес-пользователя. Инструмент не должен требовать дополнительных затрат на обучение сотрудников на начальном этапе. Одним из таких решений является Tableau.

Сервис Работа.ру выбрал Tableau для многофакторного анализа данных. Мы поговорили с Алёной Артемьевой, директором по аналитике сервиса Работа.ру и узнали как изменилась аналитика после внедренного командой BI GlowByte решения.
Читать дальше →
Всего голосов 4: ↑0 и ↓4-4
Комментарии2

Почему стриминг на KSQL и Kafka Streams — это непросто

Время на прочтение5 мин
Количество просмотров14K
Привет, Хабр!

Меня зовут Саша, я лид-разработчик в GlowByte Consulting. Мы с командой сделали неплохой стриминговый движок для одного крупного банка. Сейчас в продакшене крутится онлайн обработка банковских авторизаций, визитов клиентов в офис и еще ряд более мелких процессов, при этом все работает на KSQL и Kafka Streams. Хочу поделиться тем, на какие грабли мы наступили в процессе.

Если интересны подробности, прошу под кат.

image
Читать дальше →
Всего голосов 15: ↑15 и ↓0+15
Комментарии15

Информация

Сайт
glowbyteconsulting.com
Дата регистрации
Дата основания
2004
Численность
1 001–5 000 человек
Местоположение
Россия
Представитель
Снежана Шибаева