Все потоки
Поиск
Написать публикацию
Обновить
75.14

Data Engineering *

Обсуждаем вопросы сбора и подготовки данных

Сначала показывать
Порог рейтинга
Уровень сложности

Spark 4.0 на горизонте: Готовимся к апгрейду или остаёмся на проверенном 3.0?

Уровень сложностиПростой
Время на прочтение13 мин
Количество просмотров1.8K

Привет, Хабр! Я Станислав Габдулгазиев, архитектор департамента поддержки продаж Arenadata. Кажется, ещё вчера мы радовались возможностям Apache Spark 3.0, разбирались с Adaptive Query Execution и наслаждались улучшениями Pandas API. Но мир больших данных не стоит на месте, и вот уже на подходе Apache Spark 4.0. Новый мажорный релиз — это всегда событие: он обещает новые фичи, прирост производительности и, конечно же, новые вызовы при миграции.

Apache Spark де-факто стал стандартом для распределённой обработки данных. От классических ETL-пайплайнов и SQL-аналитики до сложного машинного обучения и стриминга — Spark так или иначе задействован во многих современных data-платформах. Поэтому каждый новый релиз вызывает живой интерес у комьюнити: что там под капотом? Какие проблемы решены? Не сломается ли то, что работало годами?

Читать далее

Переосмысление материализованных представлений: высокопроизводительный инструмент для единого lakehouse

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров335

Материализованные представления в StarRocks упрощают моделирование данных, ускоряют запросы и повышают актуальность данных в lakehouse‑архитектуре. Разбираем базовые возможности MV, три практических сценария — моделирование, прозрачное ускорение и «lake + warehouse» — и даём ссылки на актуальные рекомендации для StarRocks 3.5.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 4. Безопасность и ограничения (guardrails)

Время на прочтение7 мин
Количество просмотров4.8K

Это четвертая статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». Он объясняет, какие бывают guardrails, как они встроены в архитектуру платформы и зачем нужны: от защиты пользователей до соответствия требованиям регуляторов.

Читать далее

Рецензия на книгу «Изучаем Data Science: обработка, исследование, визуализация и моделирование данных с помощью Python»

Уровень сложностиПростой
Время на прочтение18 мин
Количество просмотров4.3K

Книг по Data Science в последние годы выходит просто море — от толстых академических учебников, перегруженных формулами, до популярных «лайтовых» пособий, обещающих образно говоря, за неделю научить предсказывать курс биткоина. Но далеко не каждая книга способна удержаться в золотой середине: быть одновременно достаточно практичной, понятной и при этом содержательной. Русское издание «Изучаем Data Science» как раз из таких примеров, на которые можно порекомендовать обратить внимание (хотя формул здесь тоже хватает).

Читать далее

Математика и софтскилы: какие навыки нужны начинающему дата-сайентисту

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров4.7K

Хабр, привет! Меня зовут Вячеслав Демин, я больше четырёх лет работаю в сфере Data Science. Сейчас руковожу направлением аналитики данных в Сбере и преподаю на курсе «Специалист по Data Science» в Яндекс Практикуме. Начинал с этого же курса в 2020 году, после чего работал в сфере страхования и нефтехимии.

В этом материале расскажу, чем стажёр отличается от джуниора, а джуниор от джуниора-плюс — и какие требования к дата-сайентистам начальных грейдов предъявляют работодатели.

Читать далее

Воспроизводимый рейтинг: можно ли с помощью краудсорсинга предсказать выбор пользователей LLM?

Время на прочтение7 мин
Количество просмотров522

Всем привет! Сегодня хотим поделиться историей нашего эксперимента, который начался с простого вопроса: а можно ли с помощью краудсорсинга воссоздать рейтинг нейросетей, который мы получаем от тысяч реальных пользователей на нашем сайте LLM Arena

Причём не в жёсткой парадигме «оцени по инструкции», а приближаясь к реальному user preference, когда пользователь выбирает то, что ему субъективно больше нравится.

TL/DR: 

* Мы можем за 3 дня воспроизвести пользовательский рейтинг LLM с точностью 90%+;

* У нас есть отобранная команда аннотаторов и автоматический фильтр качества;

* Мы научились фильтровать фрод и мусорные промпты лучше, чем стандартные крауд-платформы;;

* Теперь мы можем быстро тестировать новые модели и выдавать предрейтинг до массового запуска.

Читать далее

Проблема маленьких файлов. Оценка замедления S3 и проблем HDFS и Greenplum при работе c ними

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров3.8K

Не так давно в блоге компании Arenadata был опубликован материал тестирования поведения различных распределенных файловых систем при работе с маленькими файлами (~2 Мб). Краткий вывод: по результатам проверки оказалось, что лучше всего с задачей маленьких файлов справляется старый-добрый HDFS, деградируя в 1.5 раза, S3 на базе minIO не тянет, замедляясь в 8 раз, S3 API над Ozone деградирует в 4 раза, а наиболее предпочтительной системой в при работе с мелкими файлами, по утверждению коллег, является Greenplum, в том числе для компаний «экзабайтного клуба». Коллеги также выполнили огромную работу по поиску «Теоретических подтверждений неожиданных показателей».  

Результаты тестирования в части S3 minIO показались нашей команде неубедительными, и мы предположили, что они могут быть связаны с:

недостаточным практическим опытом эксплуатации SQL compute over S3 и S3 в целом;

отсутствием опыта работы с кластерами minIO. В частности в высоконагруженном продуктивном окружении на 200+ Тб сжатых колоночных данных Iceberg/parquet, особенно в сценариях, где проблема маленьких файлов быстро становится актуальной.

особенностями сборок дистрибутивов;

Мы благодарны коллегам за идею и вдохновение провести аналогичное тестирование. Давайте разбираться.

Читать далее

Неожиданный результат: ИИ замедляет опытных разработчиков

Время на прочтение9 мин
Количество просмотров3.3K

Мы провели рандомизированное контролируемое исследование (RCT), чтобы оценить, как инструменты искусственного интеллекта начала 2025 года влияют на продуктивность опытных open-source разработчиков, работающих в своих собственных репозиториях. Неожиданно оказалось, что при использовании ИИ-инструментов разработчики выполняют задачи на 19% дольше, чем без них — то есть ИИ замедляет их работу.

Мы рассматриваем этот результат как срез текущего уровня возможностей ИИ в одном из прикладных сценариев. Поскольку системы продолжают стремительно развиваться, мы планируем использовать аналогичную методологию в будущем, чтобы отслеживать, насколько ИИ способен ускорять работу в сфере автоматизации R&D[1].

Подробности — в полной версии статьи.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 3. Retrieval-Augmented Generation (RAG) на службе GenAI

Время на прочтение8 мин
Количество просмотров6.2K

Это третья статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». Автор разбирает, что такое RAG и зачем он нужен, как устроена архитектура retrieval-уровня и почему он критически важен для достоверных ответов. В статье — пример генерации юридической справки, практические проблемы (задержки, кеширование, актуальность) и подготовка к следующей теме — guardrails.

Читать далее

Новые темы и фокус на практике: как изменился курс по Data Science в Яндекс Практикуме

Уровень сложностиПростой
Время на прочтение7 мин
Количество просмотров2.2K

Курс «Специалист по Data Science» — один из первых в Яндекс Практикуме. Он запустился в 2019 году — за это время рынок и требования работодателей поменялись, а значит, должны меняться и учебные программы.

На связи команда курса — сегодня мы расскажем, почему сделали программу длиннее, какие темы добавили и как приступить к обучению, если захотите присоединиться.

Читать далее

Собрать команду ИИ-агентов: инструменты для дата-сайентистов, разработчиков, тестировщиков и инженеров

Уровень сложностиПростой
Время на прочтение4 мин
Количество просмотров2.7K

Мы запустили собственную платформу полного цикла производства ПО с ИИ‑агентами — MWS DevRails. Решение позволяет управлять жизненным циклом продукта и контролировать все этапы создания ПО: от проектирования и анализа до разработки, тестирования и выхода официального релиза. В платформу интегрированы ролевые ИИ-агенты, которые автоматизируют до 40% задач.

И сегодня больше расскажем о других фреймворках и библиотеках, предлагающих возможности ИИ-агентов для обработки данных и визуализации содержимого датасетов.

Читать далее

Личный топ методов Pandas

Время на прочтение2 мин
Количество просмотров7.5K

Pandas — это изумительная библиотека на Python для анализа и обработки данных. Она настолько хороша, что проще сказать, чего она не умеет, чем перечислить все её возможности. В мире аналитики это настоящий швейцарский нож.

В этой статье я хочу поделиться личным топом методов, которые помогают в первичной обработке больших данных.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 2. Архитектура корпоративной GenAI платформы

Время на прочтение13 мин
Количество просмотров5.1K

Вторая статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». На этот раз он разбирает GenAI «под капотом» и шаг за шагом выстраивает корпоративную платформу, которая превращает хайп вокруг ИИ в реальные результаты для бизнеса.

Читать далее

Ближайшие события

StarRocks и Trino: сходства, различия, бенчмарки и кейсы

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров931

Проект Trino (ранее PrestoSQL) изначально разработан в Meta, чтобы аналитики могли выполнять интерактивные запросы по широкому спектру хранилищ данных на базе Apache Hadoop. Благодаря эффективной обработке крупных наборов и сложных запросов, а также гибкому подключению к множеству источников данных, Trino быстро стал предпочтительным инструментом аналитики для крупных организаций.

Со временем потребности пользователей в аналитике эволюционировали. С ростом мобильного интернета и SaaS-приложений критически важной стала оперативная (в том числе потоковая) аналитика. Компаниям потребовались более производительные движки, поддерживающие большое число одновременных запросов и обеспечивающие низкие задержки. На этом фоне всё больше пользователей стали искать альтернативы.

StarRocks как новый аналитический движок получил широкое признание отрасли. Он демонстрирует заметные преимущества по производительности, поддержке высокой степени параллелизма и низкой задержке, привлекая внимание крупных компаний, таких как WeChat , Xiaohongshu (RedNote), Ctrip, Beike и др. Как именно StarRocks формирует свои преимущества? В чём его сходства и различия с Trino? Ниже — подробный разбор.

Читать далее

Time Horizon моделей AI: почему рост скорости зависит от сферы применения

Время на прочтение21 мин
Количество просмотров389

В статье Measuring AI Ability to Complete Long Software Tasks (Kwa & West и др., 2025) команда METR ввела понятие 50% time horizon модели: это длительность задачи (в пересчете на время выполнения профессиональным подготовленным человеком), которую модель может автономно завершить с вероятностью 50%. Мы оценили time horizon у флагманских моделей, выпущенных с 2019 года, на бенчмарке, объединяющем три набора задач в области программирования и исследований, с длительностью от 1 секунды до 16 часов для человека (HCAST, RE-Bench и SWAA; далее — METR-HRS). METR обнаружила, что time horizon удваивается каждые 7 месяцев, с возможным ускорением до 4 месяцев в 2024 году.

Существенным ограничением того анализа был домен задач: все они относились к программной инженерии или исследовательской деятельности, в то время как известно, что способности AI значительно варьируются между типами задач[1]. В этом исследовании мы рассматриваем, сохраняются ли аналогичные тренды к другим типам задач, включая автономное вождение и агентное использование компьютера, применяя методологию, позволяющую оценивать time horizon на менее детализированных данных. Данные для многих из этих бенчмарков менее надежны по сравнению с оригинальной работой, и результаты по каждому отдельному бенчмарку следует трактовать как шумные. Однако в совокупности они демонстрируют схожую динамику.

Домен программного обеспечения и reasoning-задач — таких как научные QA (GPQA), математические соревнования (MATH, Mock AIME), полуреалистичные задачи по программированию (METR-HRS) и соревновательное программирование (LiveCodeBench) — показывает time horizon в диапазоне 50–200+ минут, который в настоящее время удваивается каждые 2–6 месяцев. Таким образом, ~100-минутные time horizons и ~4-месячное время удвоения, наблюдавшиеся на METR-HRS в исходной работе, скорее всего, не являются исключением.

Читать далее

CDC без боли: как мы делали отказоустойчивую репликацию с Debezium и Kafka

Уровень сложностиСредний
Время на прочтение8 мин
Количество просмотров3.2K

Я Евгений Прочан, в платформенной команде Magnit OMNI развиваю инфраструктуру DWH. Расскажу здесь, почему нам понадобилось перейти от батчинга к CDC и как мы это делали. Причин перехода было две: потребность бизнеса в расширении возможностей инфраструктуры и нестабильность нашего старого процесса репликации. 

Мы используем в основном базы данных PostgreSQL. Оттуда пакетами раз в час передаём данные в S3, ClickHouse и таблицы Iceberg. Наша потоковая нагрузка достигает примерно полутора терабайта данных, 6000 операций в секунду (около 1500 в самой нагруженной базе данных). 

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 1. Зачем генеративному ИИ нужна особая архитектура

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров5.5K

Это первая статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». В этой части он объясняет, зачем вообще нужен архитектурный подход при внедрении GenAI-решений и как грамотная архитектура помогает пройти путь от идеи до реальной бизнес-ценности.

Читать далее

Как адаптировать аналитику для тех, кто не хочет разбираться в графиках

Время на прочтение7 мин
Количество просмотров5.1K

Если вы управляете достаточно крупным бизнесом, вы неизбежно будете собирать аналитические данные. Вы же хотите точно понимать, почему меняются показатели продаж или какие товары будут пользоваться спросом в следующем месяце.

Звучит логично и понятно, пока вы не начнете плотно работать с цифрами и графиками. И тут, как и почти в любой сфере, кто-то рано или поздно должен был внедрить AI-ассистента. Под катом посмотрим, что из этого получилось.

Читать далее

Развенчиваем мифы об AI-агентах: от фантазий к реальности

Время на прочтение16 мин
Количество просмотров5.6K

По мере роста возможностей искусственного интеллекта наш понятийный аппарат с трудом успевает за технологическим прогрессом. До недавнего времени под AI-ассистентами понимали чат-ботов и голосовых помощников, реагирующих на прямые пользовательские команды вроде «позвони маме», «какой рост у Леди Гаги?» или «запусти Spotify».

Сегодня в обиход входят новые термины: AI-агенты и agentic AI. Это отражает сдвиг в сторону более автономных и интеллектуальных систем, способных принимать решения. Проблема в том, что единых представлений о сути этих понятий нет, они часто используются неточно или трактуются ошибочно.

Чтобы прояснить ситуацию и разграничить хайп и реальность, мы побеседовали с техническими специалистами из разных отраслей, которые в реальной работе имеют дело с agentic-системами. В этой статье мы разбираем, что такое agentic AI и AI-агенты, приводим практические примеры, а также исследуем их перспективы и текущие ограничения.

Читать далее

WAP паттерн в data-engineering

Время на прочтение4 мин
Количество просмотров2.4K

Несмотря на бурное развитие дата инжиниринга, WAP паттерн долгое время незаслуженно обходят стороной. Кто-то слышал о нем, но не применяет. Кто-то применяет, но интуитивно. В этой статье хочу на примере детально описать паттерн работы с данными, которому уже почти 8 лет, но за это время ни одна статья не была написана с принципом работы.

Читать далее