Все потоки
Поиск
Написать публикацию
Обновить
81.97

Data Engineering *

Обсуждаем вопросы сбора и подготовки данных

Сначала показывать
Период
Уровень сложности

Воспроизводимый рейтинг: можно ли с помощью краудсорсинга предсказать выбор пользователей LLM?

Время на прочтение7 мин
Количество просмотров522

Всем привет! Сегодня хотим поделиться историей нашего эксперимента, который начался с простого вопроса: а можно ли с помощью краудсорсинга воссоздать рейтинг нейросетей, который мы получаем от тысяч реальных пользователей на нашем сайте LLM Arena

Причём не в жёсткой парадигме «оцени по инструкции», а приближаясь к реальному user preference, когда пользователь выбирает то, что ему субъективно больше нравится.

TL/DR: 

* Мы можем за 3 дня воспроизвести пользовательский рейтинг LLM с точностью 90%+;

* У нас есть отобранная команда аннотаторов и автоматический фильтр качества;

* Мы научились фильтровать фрод и мусорные промпты лучше, чем стандартные крауд-платформы;;

* Теперь мы можем быстро тестировать новые модели и выдавать предрейтинг до массового запуска.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 3. Retrieval-Augmented Generation (RAG) на службе GenAI

Время на прочтение8 мин
Количество просмотров6.2K

Это третья статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». Автор разбирает, что такое RAG и зачем он нужен, как устроена архитектура retrieval-уровня и почему он критически важен для достоверных ответов. В статье — пример генерации юридической справки, практические проблемы (задержки, кеширование, актуальность) и подготовка к следующей теме — guardrails.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 2. Архитектура корпоративной GenAI платформы

Время на прочтение13 мин
Количество просмотров5.1K

Вторая статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». На этот раз он разбирает GenAI «под капотом» и шаг за шагом выстраивает корпоративную платформу, которая превращает хайп вокруг ИИ в реальные результаты для бизнеса.

Читать далее

Строим корпоративную GenAI-платформу: от концепции до ROI. Часть 1. Зачем генеративному ИИ нужна особая архитектура

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров5.5K

Это первая статья специалиста по архитектуре ИТ-систем и трансформации ИТ-ландшафта Дениса Прилепского из серии «Строим корпоративную GenAI-платформу: от концепции до ROI». В этой части он объясняет, зачем вообще нужен архитектурный подход при внедрении GenAI-решений и как грамотная архитектура помогает пройти путь от идеи до реальной бизнес-ценности.

Читать далее

Выбор стратегии компактизации в ScyllaDB

Уровень сложностиСредний
Время на прочтение28 мин
Количество просмотров1.9K

ScyllaDB — это высокопроизводительная NoSQL база данных, созданная как улучшенная версия Apache Cassandra на C++. Она способна обрабатывать миллионы операций в секунду, что делает ее лидером среди распределенных баз данных. Такая производительность достигается благодаря особой архитектуре хранения данных, в центре которой находится процесс компактизации данных. Правильный выбор стратегии компактизации данных и ее оптимизация - это ключ к высокой производительности и отказоустойчивости распределенной базы данных ScyllaDB.

В этой статье рассмотрены все стратегии компактизации, их преимущества и недостатки, а также приведен детальный алгоритм выбора стратегии компактизации под конкретные use cases.

Читать далее

Ускоренная экстракция данных из SAP-систем в DWH и Lakehouse: наш опыт интеграции

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров1.3K

В современных условиях возрастает актуальность выгрузки данных из SAP ERP в хранилища данных DWH или Data Lakehouse сторонних вендоров. Интеграция с системами, не входящими в экосистему SAP, зачастую сопровождается сложностями: поставщики программного обеспечения, как правило, не поддерживают использование конкурентных продуктов. Нативный механизм выгрузки данных в SAP BW (Business Warehouse) не может быть применен к системам, не принадлежащим к экосистеме SAP.

На нашем проекте внедрения хранилища данных на основе Arenadata DB для одного из крупных банков мы столкнулись со сложностями при интеграции с SAP S/4HANA.

В статье рассматривается решение, которое позволяет быстро и надежно производить выгрузку больших объемов данных.

Читать далее

Эволюция архитектур больших языковых моделей: от GPT-2 к современным решениям

Время на прочтение21 мин
Количество просмотров2.6K

Прошло семь лет с момента разработки оригинальной архитектуры GPT. На первый взгляд, если оглянуться на GPT-2 (2019) и взглянуть вперёд на DeepSeek-V3 и Llama 4 (2024–2025), можно удивиться, насколько эти модели по-прежнему структурно схожи.

Разумеется, позиционные эмбеддинги эволюционировали от абсолютных к роторационным (RoPE), Multi-Head Attention в значительной степени уступил место Grouped-Query Attention, а более эффективная SwiGLU заменила такие функции активации, как GELU. Но если отбросить эти незначительные усовершенствования, действительно ли мы наблюдаем принципиальные архитектурные сдвиги — или просто продолжаем полировать одни и те же фундаментальные конструкции?

Сравнение LLM между собой с целью выявления ключевых факторов, влияющих на их качество (или недостатки), по-прежнему остаётся крайне нетривиальной задачей: датасеты, методы обучения и гиперпараметры сильно различаются и зачастую плохо документированы.

Тем не менее, я считаю, что изучение именно архитектурных изменений остаётся ценным подходом, позволяющим понять, над чем работают разработчики LLM в 2025 году. 

Читать далее

Как мы создали систему раннего предупреждения импульсивных торговых решений: опыт отдела Rapid и Лаборатории инноваций

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров2.3K

Система раннего предупреждения импульсивных торговых решений

🚨 Как машинное обучение помогает предотвратить эмоциональные ошибки в трейдинге

Импульсивные решения — главный враг трейдера. Эмоциональные сделки, увеличение позиций после потерь, торговля в ночное время — все это приводит к убыткам даже у опытных участников рынка.

В этой статье я расскажу, как с помощью анализа данных и машинного обучения создать систему, которая заранее предупреждает о высоком риске принятия импульсивного решения.

Что вы узнаете:
• Какие поведенческие паттерны выдают склонность к импульсивным решениям
• Как XGBoost и логистическая регрессия помогают выявить "группы риска"
• Практические рекомендации по внедрению системы предупреждений
• Реальные результаты анализа данных 1000+ трейдеров

Ключевые находки:

88% точность предсказания импульсивных решений

5 основных факторов риска, которые можно отслеживать автоматически

Снижение убыточных сделок на 23% при использовании системы

Статья будет полезна как начинающим трейдерам, так и разработчикам торговых систем. Все графики, код и методология — в открытом доступе.

#машинноеобучение #трейдинг #анализданных #финтех #python #xgboost

Читать далее

MCP и будущее AI: что стоит знать сегодня, чтобы не отстать завтра

Время на прочтение11 мин
Количество просмотров8.2K

С тех пор как OpenAI внедрила функцию function calling в 2023 году, я всё чаще задумываюсь о том, что потребуется, чтобы по-настоящему разблокировать экосистему агентов и инструментов. По мере того как базовые модели становятся всё более интеллектуальными, возможности агентов взаимодействовать с внешними инструментами, данными и API всё больше фрагментируются: разработчики вынуждены реализовывать агентов с индивидуальной бизнес-логикой под каждую отдельную систему, в которой агент работает или с которой интегрируется.

Очевидно, что необходим единый стандартный интерфейс для исполнения, извлечения данных и вызова инструментов. API стали первым универсальным стандартом для Интернета — общим языком, с помощью которого взаимодействуют программные системы. Но у AI-моделей до сих пор нет эквивалента такого унифицированного протокола.

Model Context Protocol (MCP), представленный в ноябре 2024 года, привлек большое внимание в сообществе разработчиков и AI-энтузиастов как потенциальное решение этой проблемы. В этой статье мы разберем, что такое MCP, как он меняет способ взаимодействия AI с инструментами, что уже создают разработчики на его основе и какие задачи еще предстоит решить.

Поехали.

Читать далее

Иногда приходится¹ копаться² в кишках³ Apache Spark

Уровень сложностиСредний
Время на прочтение11 мин
Количество просмотров2.1K

¹ …просто потому, что другого варианта добиться необходимого результата тупо не существует.
² и да, довольно-таки глубоко.
³ нет, серьёзно!



Давайте рассмотрим следующий бизнесовый кейс.


Дано: реально большие данные. Очень много датасетов по много терабайтов каждый, — в сумме объём тянет на петабайты. Лежат в облаке, но это не важно. Важно, что мы эти данные покупаем в «сыром» виде, каким-то образом «готовим», а потом перепродаём конечному потребителю.


Требуется: при подготовке каждого из датасетов разделить его согласно значениям одного или нескольких полей, составляющих его записи, на несколько. И это одна из особенно часто встречающихся в нашем процессе операций.


Довольно-таки сложный, продвинутый ETL у нас. Поясню на типичном примере.

Читать дальше →

DBT: трансформация данных без боли

Уровень сложностиСредний
Время на прочтение13 мин
Количество просмотров2.7K

Привет! Меня зовут Кирилл Львов, я fullstack-разработчик в компании СберАналитика. В этой статье хочу рассказать про мощный инструмент трансформации данных — DBT (Data Build Tool).

Сегодня любой средний и крупный бизнес хранит множество данных в разрозненных источниках (CRM, ERP, HRM, базы данных, файловые хранилища и т.д.). Каждая из этих систем самодостаточна и закрывает определённую боль бизнеса, но собрав данные из таких источников и стандартизировав их, нам открывается возможность анализировать данные, строить модели машинного обучения и принимать на основе этих данных управленческие решения. Для того чтобы реализовать такой подход строятся ELT (или ETL) процессы. ELT (Extract, Load, Transform) — это процесс, состоящий из трех этапов:

Читать далее

Почему стандартные подходы к разработке не работают в аналитике: взгляд изнутри

Уровень сложностиПростой
Время на прочтение2 мин
Количество просмотров6.3K

Когда владельцы бизнеса просят команду IT «добавить аналитику» в продукт, часто это заканчивается болью — и для разработчиков и для самого бизнеса. За последние несколько лет я участвовал в построении аналитических решений более чем в 10 компаниях — от стартапов до крупных корпораций. Почти во всех компаниях среднего уровня, только начинающих выстраивать BI-аналитику, я видел одну и ту же ошибку: попытку встроить аналитику в архитектуру приложения как обычный модуль. Это не работает, и вот почему.

Читать далее

Как создать инструмент для DQ только на Python и Airflow?

Уровень сложностиСредний
Время на прочтение6 мин
Количество просмотров3.4K

Всем привет! Меня зовут Павел, я главный аналитик данных управления подготовки данных Банка.

В этой статье я расскажу, как мы создали самописный инструмент и библиотеку для проверок качества данных, используя только Python и Airflow, и какую пользу это принесло команде.

Читать далее

Ближайшие события

Как медленно меняющиеся измерения помогают сохранить контекст изменений в данных

Время на прочтение10 мин
Количество просмотров3.1K

В мире данных изменения — это неизбежность. Но как отслеживать и сохранять историю изменений, чтобы аналитика оставалась точной и релевантной? В нашей новой статье мы подробно разбираем концепцию медленно меняющихся измерений (Slowly Changing Dimensions, SCD) — ключевого инструмента для работы с изменяющимися данными в хранилищах и аналитических системах.

Вы узнаете, что такое медленно меняющиеся измерения и зачем они нужны, а также познакомитесь с разными типами SCD, такими как Type 1, Type 2 и Type 3. Мы рассмотрим их ключевые различия и приведем практические примеры использования: от простого обновления данных до сохранения полной истории изменений. Вы поймете, как выбрать подходящий тип SCD для ваших задач и избежать типичных ошибок.

Статья будет полезна аналитикам, разработчикам и всем, кто работает с данными и стремится сделать их управление более эффективным. Погрузитесь в мир SCD и узнайте, как превратить изменения данных в мощный инструмент для анализа!

Читать далее

В закладки: 12 материалов про EDA и статистический анализ данных

Уровень сложностиСредний
Время на прочтение3 мин
Количество просмотров5.6K

Привет! Это команда Яндекс Практикума. Эксперты курса «Специалист по Data Science» поделились 12 статьями, которые помогут ближе познакомиться с разведочным анализом и основами статистики, — рассказываем о них и делимся ссылками.

Читать далее

Порядок работы с устареванием ML моделей. Шаг 2: Создание надежных и долговечных моделей

Уровень сложностиСредний
Время на прочтение19 мин
Количество просмотров1.3K

Еще на этапе создания модели следует проделать работу направленную на замедление ее устаревания.

Реализацию процесса работы с устареванием моделей в ML можно разделить на 4 шага.

В этой части мы с вами узнаем как создать надежную и долговечную модель, а также получить много полезной информации, которая поможет нам бороться с устареванием в будущем.

Мы пройдем полный путь создания модели и работы над замедлением ее устаревания.

Читать далее

Поднимаем потоковый сервис Kafka на Python

Уровень сложностиСредний
Время на прочтение10 мин
Количество просмотров8.6K

Всем привет, меня зовут Евгений Мунин. Я Senior ML Engineer в Ad Tech в платформе ставок для рекламы. В этой статье мы познакомимся с Apache Kafka. Мы напишем демо пример Kafka Consumer'а на Python и запустим его в облачном сервисе Confluent Cloud.

Читать далее

Применение технологии RAG при построении интегрированных систем для цифровых продуктов: детальный разбор

Время на прочтение8 мин
Количество просмотров3.7K

В 2024 году популярными словами и постоянной темой для обсуждения в IT были большие языковые модели (LLM), обработка естественного языка (NLP), искусственный интеллект и создание ценностей. Однако вкатиться в эту экосистему без подготовки может быть довольно сложно. Давайте начнём с того, что рассмотрим понятие генерации с дополненной выборкой (Retrieval Augmented Generation, RAG), чтобы лучше понять эту технологию и возможность её использования в наших цифровых продуктах.

Читать далее

Метрики оценки LLM: полное руководство по оценке LLM

Время на прочтение21 мин
Количество просмотров8.9K

Независимо от того, улучшаете ли вы точность модели путем дообучения или улучшаете контекстную релевантность системы генерации с дополненной выборкой (RAG), понимание того, как разрабатывать и выбирать подходящий набор метрик оценки LLM для вашего варианта использования, является обязательным для построения надежного конвейера оценки LLM.

В этой статье вы научитесь всему, что нужно знать о метриках оценки LLM, включая примеры кода. Мы рассмотрим следующие вопросы:

Что такое метрики оценки LLM, как их можно использовать для оценки систем LLM, а также распространенные ошибки и что делает метрики отличными.

Различные методы вычисления метрик оценки LLM и почему подход LLM-as-a-judge («LLM как судья») является наиболее эффективным.

Как реализовать и выбрать подходящий набор метрик оценки LLM с использованием библиотеки DeepEval (GitHub: DeepEval).

Читать далее

Airflow 3 is Coming

Уровень сложностиСредний
Время на прочтение5 мин
Количество просмотров6.4K

Как-то один из самых главных контрибьюторов в Airflow Ярек Потиюк рассказал, что Airflow 3 станет новым золотым стандартом индустрии. Это довольно смелое заявление. Я же считаю, что в Airflow 3  еще многого не хватает, чтобы действительно стать стандартом.

Если вы еще не знаете, что такое Airflow, то, к сожалению, это статья будет сложной. Давайте вместе освежим память.

Airflow - это платформа с открытым исходным кодом для написания и управления рабочих процессов. Airflow была основана в 2014 году в AirBnB. С тех пор платформа прошла путь до версии 1.0 в 2015 году, стала Apache Top Level Project в 2019 и плотно обосновалась как Enterprise Production-Ready в 2020 с версией 2.0.

Читать далее