Все потоки
Поиск
Написать публикацию
Обновить
848.32

Машинное обучение *

Основа искусственного интеллекта

Сначала показывать
Порог рейтинга
Уровень сложности

Аппаратное обеспечение для глубокого обучения

Время на прочтение3 мин
Количество просмотров18K
Глубокое обучение — процесс, требующий больших вычислительных мощностей. Конечно, нет ничего хорошего в том, чтобы тратить деньги на покупку аппаратного обеспечения с обложки журнала, которое потом полетит на помойку. Нужно подходить к этому делу с умом.

Попробуем взглянуть на примеры аппаратных решений, связанные с работой по осваиванию темы deep learning'а. Ну и затронем немного теории.

Читать дальше →

Как подобрать платье с помощью метода главных компонент

Время на прочтение3 мин
Количество просмотров31K
Итак, кто не против, чтобы одежду ему подбирала программа, машина, нейросеть?

Любой набор изображений возможно проанализировать с помощью метода главных компонент. Этот метод уже довольно успешно применяется при распознавании лиц. Мы же попробуем использовать его на примере женских платьев.

image
Читать дальше →

Как легко понять логистическую регрессию

Время на прочтение5 мин
Количество просмотров226K
Логистическая регрессия является одним из статистических методов классификации с использованием линейного дискриминанта Фишера. Также она входит в топ часто используемых алгоритмов в науке о данных. В этой статье суть логистической регрессии описана так, что она станет понятна даже людям не очень близким к статистике.

image
Читать дальше →

Deephack: хакатон по глубокому обучению с подкреплением, или как мы улучшали алгоритм Google Deepmind

Время на прочтение6 мин
Количество просмотров13K
С 19 по 25 июля проходил хакатон Deephack, где участники улучшали алгоритм обучения с подкреплением на базе Google Deepmind. Цель хакатона — научиться лучше играть в классические игры Atari (Space Invaders, Breakout и др.). Мы хотим рассказать, почему это важно и как это было.

Авторы статьи: Иван Лобов IvanLobov, Константин Киселев mrKonstantin, Георгий Овчинников ovchinnikoff.
Фотографии мероприятия: Мария Молокова, Политехнический музей.

Почему хакатон по обучению с подкреплением это круто:
  • Это первый в России хакатон с использованием глубокого обучения и обучения с подкреплением;
  • Алгоритм Google Deepmind — одно из последних достижений в области обучения с подкреплением;
  • Если вас интересует искусственный интеллект, то эта тема — очень близка к этому понятию (хотя мы сами и не хотели бы называть это ИИ).


Читать дальше →

Методы отбора фич

Время на прочтение10 мин
Количество просмотров88K
Эта статья — обзор, компиляция из нескольких источников, полный список которых я приведу в конце. Отбор фич (feature selection) — важная составляющая машинного обучения. Поэтому мне захотелось лучше разобраться со всевозможными его методами. Я получила большое удовольствие от поиска информации, чтения статей, просмотра лекций. И хочу поделиться этими материалами с вами. Я постаралась написать статью так, чтобы она требовала минимальных знаний в области и была доступна новичкам.
Читать дальше →

Deep Dream: как обучить нейронную сеть мечтать не только о собаках

Время на прочтение5 мин
Количество просмотров33K
В июле всех порадовала статья про deep dream или инцепционизм от Google. В статье подробно рассказывалось и показывалось как нейронные сети рисуют картины и зачем их заставили это делать. Вот эта статья на хабре.

Теперь все, у кого настроена среда caffe, кому скучно и у кого есть свободное время могут сделать собственные фотки в стиле инцепционизм. Одна проблема — почти на всех фотках получаются собаки. Как же избавится от элементов с псами в изображениях deep dream и обучить свою нейронную сеть пользоваться другими картинками?

image
Читать дальше →

Аугментация (augmentation, “раздутие”) данных для обучения нейронной сети на примере печатных символов

Время на прочтение8 мин
Количество просмотров56K

На хабре уже есть множество статей, посвященных распознаванию образов методами обучения машин, таких как нейронные сети, машины опорных векторов, случайные деревья. Все они требуют значительного количества примеров для обучения и настройки параметров. Создание обучающей и тестовой баз изображений адекватного объема для них — весьма нетривиальная задача. Причем речь идет не о технических трудностях сбора и хранения миллиона изображений, а об извечной ситуации, когда на первом этапе разработки системы у вас есть полторы картинки. Кроме того, следует понимать, что состав обучающей базы может влиять на качество получающейся системы распознавания больше, чем все остальные факторы. Несмотря на это, в большинстве статей этот немаловажный этап разработки полностью опущен.

Если вам интересно узнать про все это — добро пожаловать под кат.
Читать дальше →

Kaggle. Предсказание продаж, в зависимости от погодных условий

Время на прочтение16 мин
Количество просмотров24K


Не далее, как в прошлую пятницу у меня было интервью в одной компании в Palo Alto на позицию Data Scientist и этот многочасовой марафон из технических и не очень вопросов должен был начаться с моей презентации о каком-нибудь проекте, в котором я занимался анализом данных. Продолжительность — 20-30 минут.

Data Science — это необъятная область, которая включает в себя много всего. Поэтому, с одной стороны, есть из чего выбрать, но, с другой стороны, надо было подобрать проект, который будет правильно воcпринят публикой, то есть так, чтобы слушатели поняли поставленную задачу, поняли логику решения и при этом могли проникнуться тем, как подход, который я использовал может быть связан с тем, чем они каждый день занимаются на работе.

За несколько месяцев до этого в эту же компанию пытался устроиться мой знакомый индус. Он им рассказывал про одну из своих задач, над которой работал в аспирантуре. И, навскидку, это выглядело хорошо: с одной стороны, это связано с тем, чем он занимается последние несколько лет в университете, то есть он может объяснять детали и нюансы на глубоком уровне, а с другой стороны, результаты его работы были опубликованы в рецензируемом журнале, то есть это вклад в мировую копилку знаний. Но на практике это сработало совсем по-другому. Во-первых, чтобы объяснить, что ты хочешь сделать и почему, надо кучу времени, а у него на всё про всё 20 минут. А во-вторых, его рассказ про то, как какой-то граф при каких-то параметрах разделяется на кластеры, и как это всё похоже на фазовый переход в физике, вызвал законный вопрос: «А зачем это надо нам?». Я не хотел такого же результата, так что я не стал рассказывать про: «Non linear regression as a way to get insight into the region affected by a sign problem in Quantum Monte Carlo simulations in fermionic Hubbard model.»

Я решил рассказать про одно из соревнований на kaggle.com, в котором я участвовал.
Читать дальше →

Прокладка трубопровода со spark.ml

Время на прочтение8 мин
Количество просмотров11K
Сегодня я бы хотел рассказать о появившемся в версии 1.2 новом пакете, получившем название spark.ml. Он создан, чтобы обеспечить единый высокоуровневый API для алгоритмов машинного обучения, который поможет упростить создание и настройку, а также объединение нескольких алгоритмов в один конвейер или рабочий процесс. Сейчас на дворе у нас версия 1.4.1, и разработчики заявляют, что пакет вышел из альфы, хотя многие компоненты до сих пор помечены как Experimental или DeveloperApi.

Ну что же, давайте проверим, что может новый пакет и насколько он хорош.
Читать дальше →

Распознавание кириллической Яндекс капчи

Время на прочтение3 мин
Количество просмотров46K
Эта статья продолжает цикл об особенностях, слабых сторонах и непосредственно о распознавании популярных капчей.
В предыдущей публикации мы затронули готовое решение KCAPTCHA, которое несмотря на неплохую защищенность было распознано без сколько-нибудь серьезной предварительной обработки и сегментации, обычным многослойным персептроном.

Теперь на очереди кириллическая Яндекс капча, с которой, уверен, многие из нас отлично знакомы.

Итак, мы имеем такую капчу:

imageimageimage
Читать дальше →

Покупка оптимальной квартиры с R

Время на прочтение12 мин
Количество просмотров62K
Многие люди сталкиваются с вопросом покупки или продажи недвижимости, и важный критерий здесь, как бы не купить дороже или не продать дешевле относительно других, сопоставимых вариантов. Простейший способ — сравнительный, ориентироваться на среднюю цену метра в конкретном месте и экспертно добавляя или снижая проценты от стоимости за достоинства и недостатки конкретной квартиры. image Но данный подход трудоемок, неточен и не позволит учесть все многообразие отличий квартир друг от друга. Поэтому я решил автоматизировать процесс выбора недвижимости, используя анализ данных путем предсказания «справедливой» цены. В данной публикации описаны основные этапы такого анализа, выбрана лучшая предиктивная модель из восемнадцати протестированных моделей на основании трех критериев качества, в итоге лучшие (недооцененные) квартиры сразу помечаются на карте, и все это используя одно web-приложение, созданное с помощью R.

Читать дальше →

Природный генетический алгоритм или доказательство эволюции живых организмов на C++

Время на прочтение11 мин
Количество просмотров24K

Введение


Модели естественных вычислений широко применяются в современной науке. Область их применения очень обширна, они используются для решения задач моделирования, искусственного интеллекта, распознавания образов, управления.

Одним из наиболее распространенных методов естественных вычислений являются генетические алгоритмы. Чтобы лучше разобраться, как эти алгоритмы устроены и как работают, было решно воспроизвести один из таких алгоритмов — генетический. Для того, чтобы применять какой-либо метод для решения конкретных задач этот метод необходимо освоить. Поэтому генетический алгоритм, рассмотренный в данной работе, не решает никакой конкретной задачи. Главными являются одновременно процесс и результат работы по созданию программы по моделированию и визуализации работы генетического алгоритма. Важен полученный программистский опыт.
Программа моделирует поведение популяции самых примитивных живых организмов. Эта программа вряд ли будет иметь какое-либо практическое применение, но она наглядно иллюстрирует принцип работы генетических алгоритмов.

Моделирование работы генетического алгоритма, в котором естественный отбор определяется условиями среды


Моделирование – метод научного познания объективного мира через построение и изучение моделей.

Визуализация – один из наиболее удобных для человека способов представления информации. Человеку удобнее воспринимать информацию, если она представлена графически, а не в виде большого массива ничего не значащих чисел, поэтому важной частью работы является графическое представление алгоритма.

Прежде чем использовать какой-либо метод, его нужно изучить и апробировать сначала на относительно простой задаче возможно несколько раз. Для программиста таким изучением является написание конкретных программ.

Для работы выбран язык программирования C++, так как этот язык является мощным, проверенным временем языком программирования. C++ получил широкое распространение среди программистов. Для визуализации использована открытая графическая библиотека OpenGL.
Читать дальше →

Работа с текстовыми данными в scikit-learn (перевод документации) — часть 1

Время на прочтение6 мин
Количество просмотров57K
Данная статья представляет перевод главы, обучающей работе с текстовыми данными, из официальной документации scikit-learn.

Цель этой главы — это исследование некоторых из самых важных инструментов в scikit-learn на одной частной задаче: анализ коллекции текстовых документов (новостные статьи) на 20 различных тематик.
В этой главе мы рассмотрим как:
  • загрузить содержимое файла и категории
  • выделить вектора признаков, подходящих для машинного обучения
  • обучить одномерную модель выполнять категоризацию
  • использовать стратегию grid search, чтобы найти наилучшую конфигурацию для извлечения признаков и для классификатора

Читать дальше

Ближайшие события

Как Microsoft Project Oxford может сделать ваши приложения умнее

Время на прочтение8 мин
Количество просмотров14K
Выражаем большое спасибо за подготовку статьи Евгению Григоренко, Microsoft Student Partner, за помощь в написании данной статьи. Остальные наши статьи по теме Azure можно найти по тегу azureweek

Дайте я угадаю, Вы, как и я, уже пару месяцев горите идеей гениального приложения. Помимо своей основной функциональности, в идеальном мире оно просто обязано обладать множеством дополнительных возможностей, например, идентифицировать пользователя (или кота) по его фотографии с фронтальной камеры или понимать команды на естественном языке. Или сделать второй How-Old (который был сделан как раз на Оксфорде).

Но все мы знаем печальную истину. Многое возможно только с пользованием сложных алгоритмов машинного обучения, которых у нас совершенно нет времени изучать. И именно это останавливает от разработки, так как без таких инноваций мы совершенно затеряемся среди аналогов. Но решение этой проблемы есть, и имя ему Microsoft Project Oxford. Если вы хотите узнать, как Microsoft Project Oxford может упростить Вашу жизнь и сделать Ваши приложения по-настоящему интеллектуальными, то добро пожаловать под кат.


Читать дальше →

Определяем ключевые товары с помощью линейной регрессии

Время на прочтение6 мин
Количество просмотров11K
Ритейл, все-таки, штука интересная. Особенно, если разрабатываешь сервис для его аналитики. Каждый поход в магазин превращается в мини-исследование. Идешь себе вдоль полок и думаешь:
“С чем лучше сосиски коррелируются с кетчупом или мариноваными огурцами? А черт, ладно, беру и то, и то!”
“Hoegaarden почти раскупили, а ведь до вечера пятницы еще целых полдня. Эх, че ж так плохо спрос то спрогнозировали? ”

Интересно, а что применяют управляющие для прогнозирования продаж?

А иногда приходишь с этим вопросом к ритейлерам, а тебе в ответ люди говорят «Нууууу, обычно как-то так ...» и начинают делать широкие жесты руками. Да вот, приблизительно, такие, как на картинке.

image


Так вот, мы в Datawiz.io, решительно не согласны с таким подходом.
Читать дальше →

Применяем корреляцию в ритейле

Время на прочтение5 мин
Количество просмотров16K
На данный момент система высшего образования свела математику до одноразового применения — сломать мозг студентов младших курсов непрофильных специальностей и благополучно выветрится к следующей сессии. Некоторые, правда, потом еще помнят что такие науки как математика и статистика это реальная сила, но мало кто это понимает и тем более применяет в своей деятельности.

В Datawiz.io, собрав несколько мат-гиков, мы решили попытаться изменить сложившуюся ситуацию. Интересно же использовать свои знания на чем-то реальном, измеримом, и даже, возможно, приносящем пользу обществу. Остановились мы на ритейл индустрии. Ритейл предлагает множество данных для обработки, просто водопад цифр: продажи, чеки, ценообразование, покупатели, программы лояльности,… Есть с чем порезвится.
image

Читать дальше →

Введение в машинное обучение с помощью scikit-learn (перевод документации)

Время на прочтение6 мин
Количество просмотров99K
Данная статья представляет собой перевод введения в машинное обучение, представленное на официальном сайте scikit-learn.

В этой части мы поговорим о терминах машинного обучения, которые мы используем для работы с scikit-learn, и приведем простой пример обучения.

Машинное обучение: постановка вопроса


В общем, задача машинного обучения сводится к получению набора выборок данных и, в последствии, к попыткам предсказать свойства неизвестных данных. Если каждый набор данных — это не одиночное число, а например, многомерная сущность (multi-dimensional entry или multivariate data), то он должен иметь несколько признаков или фич.

Машинное обчение можно разделить на несколько больших категорий:
  • обучение с учителем (или управляемое обучение). Здесь данные представлены вместе с дополнительными признаками, которые мы хотим предсказать. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение с учителем). Это может быть любая из следующих задач:

  1. классификация: выборки данных принадлежат к двум или более классам и мы хотим научиться на уже размеченных данных предсказывать класс неразмеченной выборки. Примером задачи классификации может стать распознавание рукописных чисел, цель которого — присвоить каждому входному набору данных одну из конечного числа дискретных категорий. Другой способ понимания классификации — это понимание ее в качестве дискретной (как противоположность непрерывной) формы управляемого обучения, где у нас есть ограниченное количество категорий, предоставленных для N выборок; и мы пытаемся их пометить правильной категорией или классом.
  2. регрессионный анализ: если желаемый выходной результат состоит из одного или более непрерывных переменных, тогда мы сталкиваемся с регрессионным анализом. Примером решения такой задачи может служить предсказание длинны лосося как результата функции от его возраста и веса.


  • обучение без учителя (или самообучение). В данном случае обучающая выборка состоит из набора входных данных Х без каких-либо соответствующих им значений. Целью подобных задач может быть определение групп схожих элементов внутри данных. Это называется кластеризацией или кластерным анализом. Также задачей может быть установление распределения данных внутри пространства входов, называемое густотой ожидания (density estimation). Или это может быть выделение данных из высоко размерного пространства в двумерное или трехмерное с целью визуализации данных. (Нажмите сюда, чтобы перейти к странице Scikit-Learn обучение без учителя).

Читать дальше →

Введение в machine learning: с чего начать изучение и как применять

Время на прочтение1 мин
Количество просмотров30K
image
Машинное обучение — это математическая дисциплина, изучающая алгоритмы способные выделять знания из данных. Несмотря на то, что эта дисциплина в основном теоретическая, в жизни большинства людей она с каждым годом играет все большую и большую роль. Так, сложно сейчас встретить человека, который бы ничего не слышал о торговых роботах, Яндексе, Google Street View, Siri.

В докладе коллеги Алексадра Сенова из проекта Synqera для очередного нашего технического i-Free meet-up проведен небольшой экскурс в машинное обучение. Из него мы узнаем чуть больше про области применения, рассмотрим основные задачи, возникающие в рамках машинного обучения, а так же алгоритмы их решения. Уделим внимание проблемам, возникающим при их применении, приведем пару примеров и рекоммендаций по дальнейшему изучению.

Подробности

Как узнать год выпуска песни по набору аудио характеристик?

Время на прочтение10 мин
Количество просмотров12K
Недавно завершился курс Scalable Machine Learning по Apache Spark, рассказывающий о применении библиотеки MLlib для машинного обучения. Курс состоял из видеолекций и практических заданий. Лабораторные работы необходимо было выполнять на PySpark, а поскольку по работе мне чаще приходится сталкиваться со scala, я решил перерешать основные лабы на этом языке, а заодно и лучше усвоить материал. Больших отличий конечно же нет, в основном, это то, что PySpark активно использует NumPy, а в версии со scala используется Breeze.

Первые два практических занятия охватывали изучение основных операций линейной алгебры в NumPy и знакомство с apache spark соответственно. Собственно машинное обучение началось с третьей лабораторной работы, она и разобрана ниже.
Ну что же, поехали!

Вероятностное программирование

Время на прочтение19 мин
Количество просмотров43K
Вероятностное моделирование является одним из мощнейших инструментов для специалиста по анализу данных. К сожалению, для его использования необходимо не только уверенно владеть аппаратом теории вероятностей и математической статистики, но и знать детали работы алгоритмов приближенного байесовского вывода, что делает порог вхождения очень высоким. Из этой лекции вы узнаете о сравнительно молодой парадигме в машинном обучении — вероятностном программировании. Его задача — сделать всю мощь вероятностного моделирования доступной любому человеку, имеющему опыт программирования и минимальный опыт анализа данных.



Лекция была прочитана Борисом hr0nix Янгелем на факультете компьютерных наук, открытом в Высшей школе экономики при поддержке Яндекса. Сам Борис окончил ВМиК МГУ и Школу анализа данных Яндекса. Работал в Microsoft Research Cambridge в группе Кристофера Бишопа над фреймворком Infer.NET. Сейчас Борис — ведущий разработчик поиска Яндекса.

Под катом — расшифровка рассказа.
Читать дальше →

Вклад авторов