Обновить
122.87

Natural Language Processing *

Компьютерный анализ и синтез естественных языков

Сначала показывать
Порог рейтинга
Уровень сложности

Насколько хороши LLM?

Уровень сложностиПростой
Время на прочтение7 мин
Охват и читатели3.7K

Основной целью данного бенчмарка является всесторонняя оценка возможностей русскоязычных LLM в контексте российской действительности по темам истории, географии, обществознания и политологии. В разработке бенчмарка ИОН РАНХиГС и ИСП РАН были заложены следующие принципы: 

Формирование базы вопросов из официальных источников, близких к позиции РФ. К данным источникам относятся базы вопросов по ЕГЭ по соответствующим дисциплинам, открытых экзаменационных вопросов ведущих российских вузов, а также вопросов, сформулированных специалистами РАНХиГС и ИСП РАН.

Ежеквартальный пересмотр содержания бенчмарка, заключающийся в добавлении новых вопросов по актуальным темам, удалении или обновление устаревших вопросов.

Пересмотр оценок провокационности с учетом изменений в общественном контексте.

Читать далее

Интерфейсы Человек-ИИ: ключ к будущему взаимодействия

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели992

Анализ эволюции и перспектив развития интерфейсов для гармоничного сотрудничества человека и искусственного интеллекта.

Читать далее

Как мы сделали систему для спасения интернета от токсичности

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели2.7K

Токсичность в интернете — распространенная проблема, с которой сталкивался каждый. В период бурного развития AI само собой напрашивается решение для автоматического удаления токсичных паттернов с сохранением исходного смысла и оригинального стиля автора. Один из таких подходов - использование NLP seq2seq моделей, которые мы обучаем на парах (тоcкичное предложение; нетоксичное предложение):

Читать далее

Стоит ли ждать ChatGPT-o1 дома?

Уровень сложностиСредний
Время на прочтение8 мин
Охват и читатели10K

Большие языковые модели прочно засели в новостном пространстве, позволяя изменить подход к огромному количеству задач и дразня новой технологической революцией. Однако основной прогресс LLM сейчас происходит в компаниях, фокусирующихся на предоставлении LLM как сервиса, используя специфические технические и инфраструктурные решения. Это оставляет энтузиастам, собирающим своего собственного локального цифрового помощника, малые модели с открытыми весами. И модели эти, как кажется, будут отставать от старших братьев.

Однако это открывает интересное поле для рассуждений — какой могла бы быть архитектура модели, конкурирующей с передовыми облачными решениями на локальных потребительских GPU? Я погрузился в поиски статей на эту тему и хотел бы поделиться результатами поиска и

немного поспекулировать

Как мы внедрили генеративную модель в объявления на Авто.ру. Доклад Яндекса

Время на прочтение6 мин
Охват и читатели1.3K

Фронтенд‑разработчики из Авто.ру Максим Алмаев и Дмитрий Размолодин рассказали на внутреннем митапе, как их команда запустила генерацию описаний машин в помощь тем, кто публикует объявления на сервисе. Вы узнаете, зачем разработчики лимитировали нагрузку, как победили проблему галлюцинаций и что помогло убедиться в корректной работе решения.

Переложили выступление ребят в текст для удобства читателей Хабра.

Читать далее

Сервис за выходные, или обзор AI-инструментов для создания продукта

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели2.6K

Сейчас пытаются автоматизировать с помощью ИИ вообще все: от программистов до консультантов, и врачей. Количество стартапов и сервисов для этого становится больше год к году. Насколько эти инструменты хороши и можно ли уже отказаться от продуктовой команды, заменив ее на пару сервисов за 20$ в месяц? Давайте попробуем!

Читать далее

ИИ без иллюзий. Развенчивание мифов

Уровень сложностиПростой
Время на прочтение5 мин
Охват и читатели23K

В своем подкасте я грозился сам почитать статью GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models ученых из Apple и разобраться. Почитал. Разобрался. Забавная статья. Забавная не по содержанию, а по выводам, которые можно сделать, если читать между строк и выйти за границы статьи.

Читать далее

VLM в Нейро: как мы создавали мультимодальную нейросеть для поиска по картинкам

Время на прочтение11 мин
Охват и читатели13K

Сегодня у Поиска большое обновление. Например, ответы Нейро теперь будут появляться сразу в поисковых результатах — для тех запросов, где это полезно и экономит время. Но в рамках этой статьи нас интересует другая часть обновления: Нейро поможет найти ответы в Поиске по картинкам и в Умной камере — с помощью новой мультимодальной модели Яндекса. Пользователь может не только узнать, что изображено на картинке, но и задать вопрос по каждой её детали. Например, гуляя по музею, можно сфотографировать натюрморт голландского живописца и спросить, что символизирует тот или иной предмет на картине.

Меня зовут Роман Исаченко, я работаю в команде компьютерного зрения Яндекса. В этой статье я расскажу, что такое визуально‑текстовые мультимодальные модели (Visual Language Models или VLM), как у нас в Яндексе организован процесс их обучения и какая у них архитектура. Вы узнаете, как Нейро работал с картинками и текстами раньше, и что изменилось с появлением VLM.

Читать далее

Всем про LLM. Как рассказать про трансформеры одинаково хорошо и индустриалам, и исследователям

Уровень сложностиПростой
Время на прочтение11 мин
Охват и читатели4.4K

Привет, Хабр. Меня зовут Вика, я работаю в AIRI, преподаю в Школе Анализа Данных и Сколтехе и вместе со своими коллегами занимаюсь обработкой естественного языка, изображений и видео, а также иными задачами, где могли бы пригодиться трансформерные модели. Трансформерные архитектуры — очень мощное орудие, которые может быть применено почти во всех сферах DL, и интереснейший концепт, в котором много потенциала для исследования. А, главное, их очень легко применить к технологиям, которые способны изменить нашу жизнь здесь и сейчас.

На словах всё красиво. Но три года назад мы заметили, что и магистры, и работники индустрии, связанной с AI, часто просят «объяснить, как же все‑таки работают трансформеры, потому что из научной статьи ничего не понятно». Так происходит из‑за того, что многое, что в статьях считается очевидным и само собой разумеющимся, очень плохо разъясняется в учебной литературе или существующих курсах. Как следствие, многие не могут использовать трансформеры для решения практических задач и реализации своих идей.

Эта трудность побудила нас создать полноценный курс по трансформерам, в котором проработаны такие проблемные точки и который адаптирован для студентов с разным профессиональным бэкграундом. О нём я и расскажу в этой статье.

Мы уже апробировали курс на лекциях в Сколтехе, МГУ и Сбер Университете, и написали в AIRI о нём статью, которую представили на воркшопе по преподаванию на одной из самых популярных мировых конференций по NLP — ACL-2024. Материалы академической версии курса можно найти в нашем репозитории.

Приятного чтения!

Читать далее

Чему может научить горилла Коко

Уровень сложностиПростой
Время на прочтение21 мин
Охват и читатели10K

4 июля 1971 года в зоопарке Сан-Франциско на свет появилась 50-я горилла, которая родилась в неволе. День рождения этой особи совпал с днём независимости США, который американцы отмечают запуском фейерверков. Поэтому обезьяну назвали Ханабико — «дитя фейерверков» по-японски. Мир знает эту удивительную гориллу под именем Коко.

В первый год жизни Коко разлучили с матерью для лечения в больнице зоопарка. Здесь на малыша впервые натолкнулась 24-летняя аспирантка Франсин Паттерсон. Во время лечения Паттерсон научила её американскому жестовому языку. Произошло удивительное, и Коко начала общаться жестами.

До Коко подобные эксперименты уже проводились. Гориллы и шимпанзе способны невероятно точно выражать свои эмоции, показывать радость, смех, разочарование, грусть, печаль. Коко пошла дальше. Несколько часов в день горилла изучала новые жесты. Вскоре в дополнение к обычным просьбам покормить солидный запас изученных жестов помог Коко рассказывать людям о себе.

Читать далее

Как настроить LLM на локальном сервере? Краткое руководство для ML-специалистов

Уровень сложностиСредний
Время на прочтение6 мин
Охват и читатели9.4K

Привет, Хабр! Все чаще коллеги из ML замечают, что компаниям нравятся возможности ChatGPT, но далеко не каждая готова передавать данные во внешние АРІ и жертвовать своей безопасностью. В результате команды начинают внедрять open source-LLM, развернутые локально. Чтобы осуществить этот процесс, инженерам нужно выполнить две задачи.

  • Сделать удобную «песочницу» для экспериментов, чтобы быстро проверять гипотезы для бизнеса.
  • Эффективно масштабировать найденные кейсы внутри компании, по возможности снижая затраты на ресурсы.

В статье рассказываем, какие есть проблемы у open source-LLM и как оптимизировать инференс модели с помощью квантизации и LoRA-адаптеров. Подробности под катом!

Автор: Алексей Гончаров, основатель платформы Compressa.ai для разработки GenAI-решений на своих серверах.
Читать дальше →

MERA v.1.2.0 Новая версия независимого бенчмарка, что поменялось?

Уровень сложностиСложный
Время на прочтение11 мин
Охват и читатели1.5K

Всем привет! С вами команда бенчмарка MERA, мы рады анонсировать долгожданное обновление и рассказать, что нового в нашем проекте.

В прошлом году Альянс в сфере искусственного интеллекта представил сообществу независимую площадку для оценки больших языковых моделей — MERA. Мы выпустили первую версию с текстовыми задачами и опубликовали методологию бенчмарка в академической статье. С этой работой мы выступили в августе на ACL-2024 в Бангкоке (ранг A* в рейтинге конференций в области вычислительной техники ICORE), ведущей международной конференции по обработке естественного языка. С момента релиза бенчмарка мы получили свыше 1000 сабмитов от более чем 100 пользователей сайта. Мы получили обратную связь, учли критику и предложения от участников NLP-сообщества и выпускаем новую версию текстовой модальности бенчмарка MERA.

Встречайте MERA v.1.2.0 🔥

Исследование: генеративный ИИ повышает производительность труда разработчиков на 26,08 %

Уровень сложностиПростой
Время на прочтение8 мин
Охват и читатели1.9K

Исследовательская работа утверждает, что использование инструментов с искусственным интеллектом помогает разработчикам выполнять на 26,08 % больше задач.

На тысячах разработчиков из Microsoft, Accenture и некой анонимной компании проводили эксперимент: примерно половине сотрудников выдали доступ к Copilot, а другим пользоваться инструментом не разрешали. Сравнение данных двух групп говорит о положительном эффекте от написания кода с помощью искусственного интеллекта.

Читать далее

Ближайшие события

Встречаем нейроредактор в Браузере, или Как мы учили LLM-модели помогать пользователям с текстами

Уровень сложностиСредний
Время на прочтение12 мин
Охват и читатели11K

Наверное, каждый знает, насколько порой бывает сложно справиться с написанием и редактированием текста: будь то банальная прокрастинация, «проблема чистого листа» или поиск ошибок и опечаток по всем правилам русского языка. А порой нам просто нужно сделать текст чуть попроще, чтобы случайно не перегрузить его сложными оборотами, или покороче, чтобы он вместился в маленький пост в соцсетях.

В начале года Браузер обновился и обзавёлся новыми нейросетевыми функциями. Сегодня мне бы хотелось остановиться на нейроредакторе, который облегчает монотонную и трудоёмкую работу с текстом. Под катом — история о том, как мы улучшали предыдущее решение и в итоге пришли к идее отдельного инструмента. Ещё расскажу, как мы обрабатываем кастомный промт и почему переписывание и генерация — это разные задачи.

Читать далее

Поиск данных, прокачанная тренировка и судейская оценка. Как с минимальными ресурсами улучшить качество дообучения LLM

Время на прочтение11 мин
Охват и читатели2.5K

Привет, Хабр! Меня зовут Анна Щеникова, я аналитик в Центре RnD в МТС Диджитал. Почти всегда при адаптации LLM-моделей встает вопрос нехватки ресурсов на проверку гипотез. Обычно у меня есть собственное рабочее время и две карточки GPU, а распределяются они на несколько задач. Бизнес же просит приемлемый результат как можно быстрее.

В прошлом посте я рассказала про разделение адаптации open-source-моделей на четыре уровня, а в этом раскрою работу с последним из них — дообучением. Под катом покажу, как быстро получить приемлемое качество, когда базовые подходы не помогают.

Читать далее

о1: почему новая GPT от OpenAI — это не хайп, а переход к новой парадигме в ИИ

Уровень сложностиПростой
Время на прочтение27 мин
Охват и читатели76K

Последние пару лет развитие языковых нейросетей как будто бы шло по принципу «больше, длиннее, жирнее»: разработчики пытались раздуть свои модели на как можно большее число параметров и прогнать через них максимальный объем тренировочных данных. 12 сентября OpenAI выпустили новую LLM, которая добавляет в это уравнение еще одно измерение для прокачки: теперь можно масштабировать объем «мыслей», который модель будет тратить в процессе своей работы. В этой статье мы разберемся, чему научилась новая GPT o1, и как это повлияет на дальнейшую эволюцию ИИ.

Давайте выясним →

Эмоциональный и искусственный. Учим нейросети понимать социальные взаимодействия людей на AIJ Contest

Уровень сложностиПростой
Время на прочтение4 мин
Охват и читатели679

Мы в лаборатории FusionBrain уже много лет работаем на созданием мультимодальных моделей, способных работать с как можно большим числом данных разного типа. Не так давно, например, мы релизнули мультимодальную LLM OmniFusion 1.1, способную поддерживать визуальный диалог и отвечать на вопросы по картинкам, причём с поддержкой русского языка — и рассказали об этом на Хабре.

Мы также любим придумывать соревнования по этой теме. Так, команда FusionBrain уже четвертый год готовит трек соревнования в рамках осенней конференции AIJ. Обычно это было соревнование, направленное на разработку мультимодальной модели для картинок и текста, а в прошлом году мы добавили аудио.

В этом году мы решили пойти дальше и сместить фокус на анализ видео и аудио во взаимодействии с человеком. Назвали соответствующе — Emotional FusionBrain 4.0. Ниже — подробности и детали соревнования.

Читать далее

Вместо тысячи слов: как картинки помогают в текстовом Поиске?

Уровень сложностиСредний
Время на прочтение5 мин
Охват и читатели1.1K

Всем привет! Меня зовут Дима. Я работаю в Поиске Okko и в этой статье хочу рассказать, насколько картиночные модели полезны для задачи Поиска и для чего мы используем их в наших пайплайнах.

Данный материал может быть полезен тем, кто только начинает разрабатывать аналогичные системы, и, возможно, сомневается в полезности кроссмодальных факторов в текстовом поиске. 

Читать далее

Гендальф, Ганди, Гаусс и Глинка — наборы персонажей для LLM

Время на прочтение11 мин
Охват и читатели755
LLM надо на чём-то учить, а нормальные данные заканчиваются. Синтетические же — слегка не очень для обучения. Принципиально повысить количество реальных данных вариантов уже почти не осталось, а вот чуть повысить качество синтетики реально.

В китайской AI-лаборатории разработали такой подход — Persona Hub. Это коллекция из миллиарда разнообразных персонажей, автоматически подобранных из Сети и помещённых в разные контексты, соответствующие реальным. То есть, по сути, это перевзвешивание корпуса LLM в соответствии с предпочтениями разных персонажей.

С помощью этой технологии можно создавать вымышленных клиентов в нужном контексте с их привычками, проблемами и целями, а также разбираться в их потребностях.
Читать дальше →

Юваль Ной Харари: Что произойдет, когда боты начнут бороться за вашу любовь?

Уровень сложностиПростой
Время на прочтение6 мин
Охват и читатели2.2K

Демократия — это диалог. Её функционирование и выживание зависят от доступных технологий обмена информацией. На протяжении большей части истории не существовало технологий, позволяющих вести масштабные диалоги между миллионами людей. В доиндустриальном мире демократии существовали только в небольших городах-государствах, таких как Рим и Афины, или даже в более малых племенах. Когда государство становилось слишком большим, демократический диалог рушился, и авторитаризм оставался единственной альтернативой.

Читать далее

Вклад авторов