Статья состоит из двух частей:
- Краткое описание некоторых архитектур сетей по обнаружению объектов на изображении и сегментации изображений с самыми понятными для меня ссылками на ресурсы. Старался выбирать видео пояснения и желательно на русском языке.
- Вторая часть состоит в попытке осознать направление развития архитектур нейронных сетей. И технологий на их основе.
Рисунок 1 – Понимать архитектуры нейросетей непросто
Все началось с того, что сделал два демонстрационных приложения по классификации и обнаружению объектов на телефоне Android:
- Back-end demo, когда данные обрабатываются на сервере и передаются на телефон. Классификация изображений (image classification) трех типов медведей: бурого, черного и плюшевого.
- Front-end demo, когда данные обрабатываются на самом телефоне. Обнаружение объектов (object detection) трех типов: фундук, инжир и финик.