В короткой публикации [1] под названием “Авторство писателей можно узнать по специальной формуле” сообщалось, что в научном издании «New Journal of Physics», группа шведских физиков из университета Умео под руководством Себастьяна Бернгардсона описала новый метод, который позволяет на основе статистических данных определить автора текста. Исследователи проверяли, как в текстах трех писателей — Томаса Харди, Генри Мелвилла и Дэвида Лоуренса — реализуется так называемый закон Ципфа. Исследователи обнаружили, что частота появления новых слов по мере роста объема текста меняется у разных авторов по-разному, причем эта закономерность не зависит от конкретного текста, а только от автора.
Это сообщение было опубликовано 11.12.2009, а, более двадцати лет тому назад, Джон Чарльз Бейкер [2] ввел единицу для измерения способности автора использовать новые слова (здесь понятие «новые» трактуется как ранее не используемые в данном тексте). Джон доказал, что указанная единица является индивидуальной характеристикой автора.
В периодических изданиях и в сети отсутствует информация о реализации закона Зипфа для определения авторства. Поэтому моя работа является первым научным исследованием в указанной области.
Известные реализация латентно-семантического анализа (LSA) средствами языка программирования Python [1,2] обладают рядом существенных методических недостатков. Не приведены корреляционные матрицы слов и документов. Эти матрицы позволяют выявить скрытые связи. Отсутствует кластерный анализ для распределения слов и документов. Нет гибкой графической реализации для анализа семантического пространства, что крайне осложняет анализ результатов. Пользователь не имеет возможности оценить влияние исключения слов, которые встречаются один раз, метода определения семантического расстояния между словами и документами. Более того, могут возникать ситуации, когда после исключения слов, встречающихся только один раз, нарушается размерность частотной матрицы и её сингулярное разложение становиться невозможным. Пользователь получает сообщение об ошибке, не понимая их причин сетуя на недостатки программных средств Python.
Сразу хочу отметить, что статья рассчитана на аудиторию не только знакомую с методом LSA, но и имеющая минимальный опыт его практического применения. Поэтому используя для тестирования программы стандартный набор англоязычных коротких сообщений, приведу распечатку исходных данных и результаты их обработки и график семантического пространства.
Обратил внимание на перевод публикации под названием «Тематическое моделирование репозиториев на GitHub» [1]. В публикации много теоретических данных и очень хорошо описаны темы, понятия, использование естественных языков и многие другие приложения модели BigARTM.
Однако, обычному пользователю без знаний в области тематического моделирования для практического использования достаточно знаний интерфейса и чёткой последовательности действий при подготовке текстовых исходных данных.Разработке прогамного обеспечения для подготовки текстовых данных и выбору среды разработки и посвящена данная публикация.
Семантический (смысловой) анализ текста – одна из ключевых проблем как теории создания систем искусственного интеллекта, относящаяся к обработке естественного языка (Natural Language Processing, NLP), так и компьютерной лингвистики. Результаты семантического анализа могут применяться для решения задач в таких областях как, например, психиатрия (для диагностирования больных), политология (предсказание результатов выборов), торговля (анализ востребованности тех или иных товаров на основе комментариев к данному товару), филология (анализ авторских текстов), поисковые системы, системы автоматического перевода. Поисковая машина Google полностью построена на семантическом анализе.
Визуализация результатов семантического анализа является важным этапом его проведения поскольку может обеспечить быстрое и эффективное принятие решений по результатам анализа.
Анализ публикаций в сети по латентно семантическому анализу (LSA) показывает, что визуализация результатов анализа приведена только в двух публикациях [1,2] в виде двух координатного графика семантического пространства с нанесенными координатами слов и документов. Такая визуализация не позволяет однозначно определить группы близких документов и оценить уровень их смысловой связи по принадлежащим документам словам. Хотя в моей публикации под названием “Полный латентно семантический анализ средствами Python” [1] предпринималась попытка использования кластерного анализа результатов латентно семантического анализа, однако были определены только метки кластеров и координаты центроидов для групп слов и документов без визуализации.