
Токсоплазма и Токсоплазмоз или Одноклеточное, которое (похоже) научилось стерилизовать мужчин

Пользователь
Международная группа физиков выпустила исследование, согласно которому многие физические явления можно объяснить тем, что наша Вселенная не возникла из «сингулярности», как ранее предполагал Большой взрыв, а образовалась внутри сверхмассивной чёрной дыры.
По этой теории, материя внутри коллапсирующего облака достигла состояния высокой плотности, но вместо того, чтобы сжаться в бесконечную сингулярность, она «отскочила назад, как сжатая пружина» из-за накопленной энергии, создав нашу Вселенную.
Это объясняет многое о тёмной материи и позволяет убрать ряд парадоксов. А весь секрет, оказывается, состоял в белых карликах, живущих сотни триллионов лет.
Большинство из тысяч экзопланет, открытых к настоящему времени, были обнаружены при помощи транзитного метода. Далёкая планета, проходя по диску своей звезды, немного затмевает её. Такое изменение яркости минимальное, но строго периодическое, поэтому хорошо поддаётся измерению. Более того, этот метод работает, прежде всего, при использовании космических телескопов, среди которых наиболее значительный объём данных удалось собрать двум аппаратам: Kepler и TESS, причём Kepler работал с 2009 по 2018 год, а TESS продолжает работу с 2018 года до наших дней. Однако сравнительно малоизвестно, что истоки транзитного метода уходят в начало 1990-х, когда он был впервые опробован при наблюдении за пульсарами. Напомню, что пульсар – это нейтронная звезда (остаток от коллапса более крупной звезды), испускающая периодические радиоимпульсы. Первые пульсары были открыты в 1967 году и настолько удивили астрономическое сообщество, что их импульсы даже приняли за сигналы инопланетян. Тем не менее, откуда вообще у пульсаров могут появиться планеты, и какие условия могут на этих планетах складываться? Под катом поищем ответы на эти вопросы.
Шёл 1905 год, когда французский биолог Люсьен Куэно столкнулся с головоломкой. Он занимался разведением мышей, пытаясь расшифровать закономерности наследования окраски шерсти, но результаты одного из скрещиваний получались не такими, как он ожидал. Когда Куэно вывел гетерозиготных желтокожих мышей, у которых жёлтый окрас был доминантным признаком, а чёрный — рецессивным, он заметил, что на каждую чёрную мышь рождалось две жёлтых, вместо предсказанного соотношения 3:1. Потребовалось ещё пять лет, чтобы пара американских исследователей придумала объяснение происходящему, после чего мышь стала главным модельным организмом биомедицины.
Загадка Куэно поначалу казалась нарушением менделевских законов наследования. Но такие исключения типичны для биологии, где простые правила сговариваются между собой и порождают невероятные вариации, заслоняя наше понимание, как заслоняет поле зрения густой туман. В то время, несмотря на то, что селекционеры уже давно использовали закономерности в наследовании, принципы, лежащие в основе наследственности, оставались загадочными. Так было до тех пор, пока австрийский монах Грегор Мендель не показал, что признаки передаются от родителей к потомству в виде дискретных, независимых друг от друга пакетов.
Тонкая настройка Вселенной – последний оплот сторонников разумного замысла в сражении с атеистами, прибежище для тех, кто уже не в силах отрицать законы физики и дарвиновскую эволюцию, но всё ещё верит в сверхъестественную силу, которая заблаговременно позаботилась о нашем благополучии и предопределила наперёд всю космологическую эволюцию. Якобы невозможность существования разумной жизни во вселенных с другими значениями фундаментальных констант – самое явное доказательство, что мир был сотворён Богом, настроившим физические параметры так, чтобы мы могли появиться и жить в разумно устроенном мире. Научной альтернативой этому объяснению считается инфляционная мультивселенная, в которой существуют все возможные миры со всеми значениями констант. Большинство этих миров необитаемы, а наша вселенная пригодна для жизни просто потому, что в других вселенных некому задавать вопросы о тонкой настройке. В данной статье мы попробуем кратко разобрать столь обширную тему с точки зрения современной космологии и понять, какая теория ближе всех подошла к решению этой проблемы. В процессе мы выясним, поставила ли наука точку в вопросе о наличии или отсутствии в эволюции Вселенной разумного замысла, а также узнаем, есть ли сегодня хоть какое-то основание для антропоцентризма и веры в Творца.
Напоминаю, что у всех IT-шников есть свободное время. И хоть иногда хочется отдохнуть от моделей, потоков данных, презентаций и совещаний. Но что делать, если 5 дней в неделю ты занят, а на даче нужен полив? Надо совмещать интересное с полезным. Прошлая статья на мой взгляд получила в целом положительные отклики, поэтому с удовольствием расскажу, что же было дальше.
Как автономно поливать?
Чтоб свояка не доставать
И лишку не трясти соседа
Не ждать дождя после обеда.
А так, чтобы само включилось
Само пролилось, освежилось.
Где надо подогрев сработал,
А у меня свои заботы!
В середине ХХ века экономика росла вместе с людьми. Бэби-бумеры и поколение X начинали карьеру в момент дешевых энергоресурсов, массовой индустриализации и расширения потребительского рынка. Условия позволяли накапливать, покупать, строить планы.
Миллениалы и зуммеры сталкиваются с другой реальностью. Стоимость жизни выросла. Конкуренция выше — рабочих мест не хватает, искусственный интеллект начинает заменять людей. При том же уровне усилий новое поколение в среднем беднее предыдущего.
Что будет дальше? Куда инвестировать, чтобы сохранить свой капитал?
Привет, Хабр! Меня зовут Алексей Верховский, я ведущий инженер в техническом блоке МТС. В середине 2019 года я вместе с коллегами начал планировать техническое решение и готовить оборудование для строительства базовой станции (БС) на южном континенте. Это совместный проект МТС с Арктическим и антарктическим научно-исследовательским институтом (ААНИИ).
Кошки — не только любовь айтишников нереально замурчательные питомцы, но и участники научных экспериментов и открытий. Некоторые из них вдохновляли ученых, инженеров и врачей на протяжении веков. А избранные (нет, Нео, ты не кошка, сядь на место) стали участниками научных исследований и космических программ. В этом посте расскажу о такой пятерке: будут и космонавты, и клоны, и исследователи Антарктики. Но, конечно, хвостатых героев больше — так что если у вас есть свои любимчики, дополняйте подборку в комментариях. Поехали!
Давиде Фарноккья занимается поиском и отслеживанием астероидов, и несколько лет назад он увидел нечто, что не смог объяснить. Фарноккья работает в Центре НАСА по изучению околоземных объектов в Калифорнии. С помощью программ, в создании которых он принимал участие, он следит за всеми известными астероидами и кометами, проносящимися вблизи нашей планеты. Он — картограф, работающий в четырёх измерениях. «Наша работа заключается в том, чтобы предсказывать, как всё движется в космосе, — говорит он. — Поэтому, если появляется что-то новое или неожиданное, это и есть наш прогресс в данной области».
В 2016 году Фарноккья увидел нечто действительно необычное: астероид, известный как 2003 RM, блуждал по космосу, казалось, сам по себе. Его орбита вокруг Солнца сместилась – да так, что одной только гравитацией это было не объяснить. Он даже принял во внимание небольшой импульс, который солнечный свет придаёт космическим камням, но орбита астероида всё равно не соответствовала ожиданиям.
«Происходит что-то ещё», — подумал тогда Фарноккья. Но что? Что-то подталкивало астероид, но никаких признаков чего-то вроде ракетной тяги не было. Он был озадачен не меньше, чем взволнован. «Когда вещи ведут себя не так, как вы ожидаете, это значит, что впереди вас ждёт что-то интересное».
Можно предположить, что трёхмерное пространство ведёт себя так же, как пространства более высоких размерностей. Добавление измерения лишь создаёт новое направление для движения, не меняя фундаментальных свойств пространства: его бесконечности и однородности. Однако каждое измерение обладает уникальным характером. Например, в размерностях 8 и 24 шары можно упаковать особенно плотно, в некоторых измерениях существуют «экзотические» сферы, которые кажутся смятыми, а в третьем измерении возможны узлы, которые в более высоких размерностях всегда можно развязать.
Парадокс двух детей Вы встретили на прогулке соседей с сыном. Известно, что у них двое детей. Какова вероятность, что второй — тоже мальчик?
Казалось бы, детская задачка, где нужно просто “вспомнить формулу”, но всё не так однозначно. Если задать этот вопрос прохожему, он, скорее всего, скажет ½. Преподаватель математики, возможно, ответит ⅓. Кто из них прав?
В каком-то смысле, правы оба. Просто каждый представляют себе свой способ, как была получена информация о ребёнке. На самом деле это и есть условие задачи. Только скрытое.
Вопреки распространенному мнению, теория вероятностей не говорит, возможна ли та или иная ситуация. Прежде чем что-то считать, придется подготовить фундамент — идеализировать наблюдение, понять, что именно мы считаем случайным и построить модель эксперимента. Без этого никакие формулы не помогут.
Парадоксы, о которых пойдет речь, — не логические ошибки. Это ситуации, в которых само понятие вероятности начинает колебаться. Они не ломают теорию, но обнажают, где она требует особенной осторожности. Именно в таких местах теория вероятностей становится особенно странной — и особенно интересной.
В этой статье — три таких истории. В первой один и тот же факт даёт разные вероятности, если по-разному устроено наблюдение. Во второй один и тот же объект может быть “случайным” множеством способов. А в третьей невозможно придумать, как сделать задачу математически строгой.
По дороге мы обсудим, что такое вероятностная модель, геометрическая вероятность и математическое ожидание. А в конце поговорим о том, почему в теории вероятностей у одной задачи могут быть несколько ответов и как с этим жить. А еще, вас ждет красивая задача — бонус для тех, кто дочитает статью до конца.
А пока — вернёмся к соседям с мальчиком. Разберемся, почему эта задачка не так проста, как кажется на первый взгляд.
В прошлый раз мы разбирали (и отлично так разобрали, на 200+ комментариев), почему нейросети на самом деле не являются сильным ИИ, а само появление последнего весьма маловероятно. Сегодня объектом нашего рассмотрения станет следующая священная корова технологического прогресса — так называемые «квантовые компьютеры», которые в воображении адептов уже практически готовы и вот-вот начнут вести нас за ручку в золотой век человечества.
Давайте по-честному. В 2025 году вроде бы уже все слышали слово «крипта», но стоит задать простой вопрос — «что это вообще такое?» — и у 8 из 10 людей в глазах появляется лёгкая паника. Типа: «ну это вроде как биткойн… и вроде как он где-то в интернете живёт…»
Давайте с этим разберемся, чтобы не чувствовать себя на крипто-рынке как школьник без айфона.
Криптовалюта — это просто деньги, но цифровые. Ни рубли, ни доллары, ни евро — это отдельная интернет валюта. Она не лежит у тебя в кошельке, её нельзя потрогать или порвать, но она при этом абсолютно реальна. Она существует в интернете и работает по своим законам. Главное отличие: никаких банков, никаких ЦБ, никаких дядек в костюмах с галстуками. Есть ты, есть твой кошелек, и есть блокчейн — технология, которая следит, чтобы всё было по-честному: никто не мог украсть, подделать или незаметно «допечатать» новые монеты.
Существует эзотерическое поверье об информационном поле Вселенной, также известном как хроники Акаши – универсальной эфирной библиотеке, где записана вся информация о прошлом, настоящем и будущем, включая судьбу каждого из нас. В этой базе данных хранятся все знания мира – оттуда пророки черпали религиозные откровения, писатели и поэты – литературные шедевры, художники и музыканты – произведения искусства, учёные – научные открытия, а инженеры – технические изобретения. Но вся эта мудрость веков доступна только избранным – тем, кто умеет «настроиться» на нужную частоту и «срезонировать» с полем. Есть даже платные курсы, на которые приглашают всех, кто хочет научиться специальным образом медитировать и подключаться к этому космическому интернету.
Можно сразу отбросить никчёмную аналогию с вибрирующими полями как разновидность псевдонаучной фантастики, но идея универсального архива всех возможных текстов, наглядно представленная Хорхе Луисом Борхесом в рассказе «Вавилонская библиотека», подозрительно напоминает гипотезу цифровой мультивселенной – Конечного ансамбля всех математически возможных миров. А если углубиться в метафизику, мы непременно придём к платоновскому миру идей, в котором все вечные истины и прообразы вещей существуют независимо от нашего желания и веры. Чем тогда ясновидящие хуже математиков, которые верят, что доказательства теорем приходят им свыше? Чем античный миф о мойрах, плетущих нити судьбы, уступает релятивистской теории блок-вселенной, где вся ваша жизнь записана в виде пучка мировых линий? А гипотеза математической Вселенной Макса Тегмарка – разве это не предельный платонизм? Так может, вообще не существует ничего, кроме мира идей, а наша материальная действительность – всего лишь иллюзия? Или нам следует лучше разобраться с тем, как работают поисковые алгоритмы Вавилонской библиотеки?