Существует популярный подход к покрытию метриками Celery: он заключается в запуске некоторого процесса, который слушает события из специальной очереди, на основе этих событий обновляются объекты метрик, а фоновый поток сервера отдаёт собранные метрики скраперу. В этой статье подробно разберём события, их жизненный цикл, откуда и как их принимать. Также поговорим про механизм удалённого управления (remote control), какие у него есть возможности и как им пользоваться. Обсудим существующие решения, чем они отличаются, и почему вам, возможно, будет выгодно сделать своё.
Антон Зубарев @aszubarev
Пользователь
Особенности сбора метрик. Запуск приложения gunicorn-ом в режиме мультипроцессинга
Средний
20 мин
5.2KТуториал
Представим следующую ситуацию. Ваш python веб-сервер собирает какие-то метрики prometheus_client-ом: счётчики, гистограммы и т. д, например, количество входящих запросов. Вы также настроили приложение, чтобы /metrics
возвращал все ваши метрики. Если режим работы prometheus_client-a оставить по умолчанию, при запуске приложения gunicorn-ом с более чем одним воркером вы сталкиваетесь с проблемой консистентности метрик.
+29
Информация
- В рейтинге
- Не участвует
- Откуда
- Москва, Москва и Московская обл., Россия
- Работает в
- Дата рождения
- Зарегистрирован
- Активность
Специализация
Backend Developer, Software Architect
Lead
Git
SQL
Docker
Python
Django
RabbitMQ
Kubernetes
Database
Designing application architecture
Creating project architecture